Carbon-supported copper catalyst was prepared for the first time in one-step with copper nitrate and corn stalk through calcination under different temperatures. Uniformly dispersed nanoparticles were obtained and wer...Carbon-supported copper catalyst was prepared for the first time in one-step with copper nitrate and corn stalk through calcination under different temperatures. Uniformly dispersed nanoparticles were obtained and were identified to be Cu(0) and Cu(Ⅰ) in XRD patterns. Excellent catalytic activity and selectivity were achieved in the N-arylation of pyrazole under ligand and protection gas free conditions. About90.4% of product yield was achieved with only 0.5 mol% of copper catalyst(Cu-C-300), which was considerably more efficient than previous reports. XPS results suggested that the N-arylation of pyrazole activity was closely related to the surface Cu(Ⅰ) species.展开更多
A bifunctional heterogeneous catalyst was designed and synthesized,denoted DMEDA/IL–NH2-MIL-101.The structure and physical-chemical characterization of DMEDA/IL–NH2-MIL-101 and its precursors were characterized by S...A bifunctional heterogeneous catalyst was designed and synthesized,denoted DMEDA/IL–NH2-MIL-101.The structure and physical-chemical characterization of DMEDA/IL–NH2-MIL-101 and its precursors were characterized by SEM,N2 adsorption-desorption,XPS,FT-IR,PXRD,elemental analysis,and TGA techniques.The date showed that the two catalytic components of N,N-dimethylethylenediamine(DMEDA)and 1-butyl-3-methylimidazolium bromide(BmimBr)were chemically immobilized in NH2-MIL-101 nanocages.The amine of DMEDA was grafted onto carrier NH2-MIL-101 by N–Cr coordinate covalent bonds and the ionic liquid of BmimBr(IL(Br-))was anchored in the NH2-MIL-101 nanocages by'ship-in-a-bottle'method,in which the amidogen of NH2-MIL-101 condensed with N,N-carbonyldiimidazole(CDI)firstly,and then alkylated with 1-bromo butane.This novel heterogeneous catalyst with two different active sites can efficiently catalyze the synthesis of N-aryl oxazolidin-2-ones from carbon dioxide(CO2),epoxides,and anilines in one-pot under mild solvent-free conditions.It not only showed good stability and recoverability after five cycles but also exhibited shape selectivity for the substrate due to the synergic catalysis of amine,ionic liquid,and NH2-MIL-101.This novel bifunctional material is a promising solid catalyst for the green synthesis of N-aryl oxazolidin-2-ones.展开更多
A novel strategy to synthesize copper-based nanoparticles supported on carbon nitride(C3 N4) was developed by popping of mixture containing C3 N4 and cupric nitrate. Characterizations such as X-ray photoelectron spect...A novel strategy to synthesize copper-based nanoparticles supported on carbon nitride(C3 N4) was developed by popping of mixture containing C3 N4 and cupric nitrate. Characterizations such as X-ray photoelectron spectroscopy(XPS) and X-ray diffraction(XRD) indicate that the structure of g-C3 N4 maintained although a popping process occurred. High resolution transmission electronic microscopy(HRTEM) characterization illustrated that copper-based nanoparticles with diameter of < 1 nm were well distributed on g-C3 N4. This kind of copper catalyst exhibits high catalytic activity and selectivity in arylation of pyrazole, a simple and effect strategy to construct C-N bond in organic chemistry.According to the results of control experiments and characterizations, cuprous oxide should be the catalytic active phase in the supported coperbased catalyst.展开更多
基金supported by the Natural Science Foundation of China(91645115 and 21473003)High-level talents funding project of Hebei(CL201601,E2016100015)science technology research and development guidance program project of Baoding City(No.16ZF027)
文摘Carbon-supported copper catalyst was prepared for the first time in one-step with copper nitrate and corn stalk through calcination under different temperatures. Uniformly dispersed nanoparticles were obtained and were identified to be Cu(0) and Cu(Ⅰ) in XRD patterns. Excellent catalytic activity and selectivity were achieved in the N-arylation of pyrazole under ligand and protection gas free conditions. About90.4% of product yield was achieved with only 0.5 mol% of copper catalyst(Cu-C-300), which was considerably more efficient than previous reports. XPS results suggested that the N-arylation of pyrazole activity was closely related to the surface Cu(Ⅰ) species.
基金Support of this work by the National Natural Science Foundation of China(21573016)is gratefully acknowledged.
文摘A bifunctional heterogeneous catalyst was designed and synthesized,denoted DMEDA/IL–NH2-MIL-101.The structure and physical-chemical characterization of DMEDA/IL–NH2-MIL-101 and its precursors were characterized by SEM,N2 adsorption-desorption,XPS,FT-IR,PXRD,elemental analysis,and TGA techniques.The date showed that the two catalytic components of N,N-dimethylethylenediamine(DMEDA)and 1-butyl-3-methylimidazolium bromide(BmimBr)were chemically immobilized in NH2-MIL-101 nanocages.The amine of DMEDA was grafted onto carrier NH2-MIL-101 by N–Cr coordinate covalent bonds and the ionic liquid of BmimBr(IL(Br-))was anchored in the NH2-MIL-101 nanocages by'ship-in-a-bottle'method,in which the amidogen of NH2-MIL-101 condensed with N,N-carbonyldiimidazole(CDI)firstly,and then alkylated with 1-bromo butane.This novel heterogeneous catalyst with two different active sites can efficiently catalyze the synthesis of N-aryl oxazolidin-2-ones from carbon dioxide(CO2),epoxides,and anilines in one-pot under mild solvent-free conditions.It not only showed good stability and recoverability after five cycles but also exhibited shape selectivity for the substrate due to the synergic catalysis of amine,ionic liquid,and NH2-MIL-101.This novel bifunctional material is a promising solid catalyst for the green synthesis of N-aryl oxazolidin-2-ones.
基金supported the following funders: One Hundred Talent Project of Hebei Province (Grant No. E2016100015)National Natural Science Foundation of China (No. 21773053)+2 种基金Hebei provincial Natural Science Foundation (No. B2017201084)Hebei Provincial Technology Foundation for High-level talents (No. CL201601)the science technology research and development guidance program project of Baoding City (No. 16ZF027)
文摘A novel strategy to synthesize copper-based nanoparticles supported on carbon nitride(C3 N4) was developed by popping of mixture containing C3 N4 and cupric nitrate. Characterizations such as X-ray photoelectron spectroscopy(XPS) and X-ray diffraction(XRD) indicate that the structure of g-C3 N4 maintained although a popping process occurred. High resolution transmission electronic microscopy(HRTEM) characterization illustrated that copper-based nanoparticles with diameter of < 1 nm were well distributed on g-C3 N4. This kind of copper catalyst exhibits high catalytic activity and selectivity in arylation of pyrazole, a simple and effect strategy to construct C-N bond in organic chemistry.According to the results of control experiments and characterizations, cuprous oxide should be the catalytic active phase in the supported coperbased catalyst.