For rechargeable aqueous zinc-ion batteries(ZIBs),the design of nanocomposites comprised of electrochemically active materials and carbon materials with novel structures has great prom-ise in addressing the issue of e...For rechargeable aqueous zinc-ion batteries(ZIBs),the design of nanocomposites comprised of electrochemically active materials and carbon materials with novel structures has great prom-ise in addressing the issue of electrical conductivity and structural stability in the electrode materials during electrochemical cycling.We report the production of a novel flexible electrode material,by anchoring MnO_(2) nanosheets on a B,N co-doped carbon nanotube ar-ray(BNCNTs)grown on carbon cloth(BNCNTs@MnO_(2)),which was fabricated by in-situ pyrolysis and hydrothermal growth.The generated BNCNTs were strongly bonded to the surface of the car-bon fibers in the carbon cloth which provides both excellent elec-tron transport and ion diffusion,and improves the stability and dur-ability of the cathode.Importantly,the BNCNTs offer more active sites for the hydrothermal growth of MnO_(2),ensuring a uniform dis-tribution.Electrochemical tests show that BNCNTs@MnO_(2) delivers a high specific capacity of 310.7 mAh g^(−1) at 0.1 A g^(−1),along with excellent rate capability and outstanding cycling stability,with a 79.7% capacity retention after 8000 cycles at 3 A g^(−1).展开更多
In the realm of optoelectronics,photodetectors play pivotal roles,with applications spanning from high-speed data communication to precise environmental sensing.Despite the advancements,conventional photodetectors gra...In the realm of optoelectronics,photodetectors play pivotal roles,with applications spanning from high-speed data communication to precise environmental sensing.Despite the advancements,conventional photodetectors grapple with challenges with response speed and dark current.In this study,we present a photodetector based on a lateral MoTe_(2)p-n junction,defined by a semi-floating ferroelectric gate.The strong ferroelectric fields and the depletion region of the p-n junction in the device are notably compact,which diminish the carrier transit time,thereby enhancing the speed of the photoelectric response.The non-volatile MoTe_(2)homojunction,under the influence of external gate voltage pulses,can alter the orientation of the intrinsic electric field within the junction.As a photovoltaic detector,it achieves an ultra-low dark current of 20 pA,and a fast photo response of 2μs.The spectral response is extended to the shortwave infrared range at 1550 nm.Furthermore,a logic computing system with light/no light as binary input is designed to convert the current signal to the voltage output.This research not only underscores the versatility of 2D materials in the realm of sophisticated photodetector design but also heralds new avenues for their application in energy-efficient,high-performance optoelectronic devices.展开更多
基金financial support from projects funded by the National Natural Science Foundation of China(52172038,22179017)the National Key Research and Development Program of China(2022YFB4101600,2022YFB4101601)。
文摘For rechargeable aqueous zinc-ion batteries(ZIBs),the design of nanocomposites comprised of electrochemically active materials and carbon materials with novel structures has great prom-ise in addressing the issue of electrical conductivity and structural stability in the electrode materials during electrochemical cycling.We report the production of a novel flexible electrode material,by anchoring MnO_(2) nanosheets on a B,N co-doped carbon nanotube ar-ray(BNCNTs)grown on carbon cloth(BNCNTs@MnO_(2)),which was fabricated by in-situ pyrolysis and hydrothermal growth.The generated BNCNTs were strongly bonded to the surface of the car-bon fibers in the carbon cloth which provides both excellent elec-tron transport and ion diffusion,and improves the stability and dur-ability of the cathode.Importantly,the BNCNTs offer more active sites for the hydrothermal growth of MnO_(2),ensuring a uniform dis-tribution.Electrochemical tests show that BNCNTs@MnO_(2) delivers a high specific capacity of 310.7 mAh g^(−1) at 0.1 A g^(−1),along with excellent rate capability and outstanding cycling stability,with a 79.7% capacity retention after 8000 cycles at 3 A g^(−1).
基金Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0580000)Natural Science Foundation of China(62222413,62025405,62105100,62075228 and 62334001)+1 种基金Natural Science Foundation of Shanghai(23ZR1473400)Hundred Talents Program of the Chinese Academy of Sciences。
文摘In the realm of optoelectronics,photodetectors play pivotal roles,with applications spanning from high-speed data communication to precise environmental sensing.Despite the advancements,conventional photodetectors grapple with challenges with response speed and dark current.In this study,we present a photodetector based on a lateral MoTe_(2)p-n junction,defined by a semi-floating ferroelectric gate.The strong ferroelectric fields and the depletion region of the p-n junction in the device are notably compact,which diminish the carrier transit time,thereby enhancing the speed of the photoelectric response.The non-volatile MoTe_(2)homojunction,under the influence of external gate voltage pulses,can alter the orientation of the intrinsic electric field within the junction.As a photovoltaic detector,it achieves an ultra-low dark current of 20 pA,and a fast photo response of 2μs.The spectral response is extended to the shortwave infrared range at 1550 nm.Furthermore,a logic computing system with light/no light as binary input is designed to convert the current signal to the voltage output.This research not only underscores the versatility of 2D materials in the realm of sophisticated photodetector design but also heralds new avenues for their application in energy-efficient,high-performance optoelectronic devices.