期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于LDA模型的音乐推荐算法 被引量:16
1
作者 李博 陈志刚 +1 位作者 黄瑞 郑祥云 《计算机工程》 CAS CSCD 北大核心 2016年第6期175-179,184,共6页
互联网的普及以及音乐资源的电子化使得人们可以更方便地获得音乐资源。但随着音乐库变得越来越大、资源越来越丰富,人们已经很难准确及时地找到自己喜欢的音乐。因此,对于音乐网站而言,需要一个合适的音乐推荐算法向用户推荐音乐。根... 互联网的普及以及音乐资源的电子化使得人们可以更方便地获得音乐资源。但随着音乐库变得越来越大、资源越来越丰富,人们已经很难准确及时地找到自己喜欢的音乐。因此,对于音乐网站而言,需要一个合适的音乐推荐算法向用户推荐音乐。根据已有的基于音频信息的音乐推荐以及协同过滤方法,分析用户的音乐试听数据以及下载数据,并结合Latent Dirichlet分配(LDA)主题挖掘模型,提出一种音乐推荐算法。实验结果表明,与基于用户的协同过滤算法以及基于项目的协同过滤算法相比,该算法可以更加高效地向用户推荐感兴趣的音乐。 展开更多
关键词 协同过滤 音乐推荐 主题挖掘 LATENT Dirichlet分配模型 吉布斯抽样 基于lda模型的音乐推荐
在线阅读 下载PDF
基于位置社会网络的双重细粒度兴趣点推荐 被引量:11
2
作者 廖国琼 姜珊 +1 位作者 周志恒 万常选 《计算机研究与发展》 EI CSCD 北大核心 2017年第11期2600-2610,共11页
兴趣点推荐是在基于位置社会网络(location-based social network,LBSN)中流行起来的一种全新形式的推荐.利用LBSN所包含的丰富信息进行个性化推荐能有效增强用户体验和提高用户对LBSN的依赖度.针对无显示用户偏好、兴趣非一致性和数据... 兴趣点推荐是在基于位置社会网络(location-based social network,LBSN)中流行起来的一种全新形式的推荐.利用LBSN所包含的丰富信息进行个性化推荐能有效增强用户体验和提高用户对LBSN的依赖度.针对无显示用户偏好、兴趣非一致性和数据稀疏性等挑战性问题,研究一种针对LBSN的双重细粒度POI推荐策略,即一方面将用户的全部历史签到信息以小时为单位细分为24个时间段,另一方面将每个POI细分为多个潜在主题及其分布,同时利用用户的历史签到信息和评论信息挖掘出用户在不同时间段的主题偏好,以实现POI的Top-N推荐.为实现该推荐思路,首先,根据用户的评论信息,运用LDA模型提取出每个POI的主题分布;然后,对于每个用户,将其签到信息划分到24个时间段中,通过连接相应的POI主题分布映射出用户在不同时间段对每个主题的兴趣偏好.为解决数据稀疏问题,运用高阶奇异值分解算法对用户-主题-时间三阶张量进行分解,获取用户在每个时间段对每个主题更为准确的兴趣评分.在真实数据集上进行了性能测试,结果表明所提出的推荐策略具有较好的推荐效果. 展开更多
关键词 兴趣点推荐 基于位置社会网络 lda主题模型 兴趣映射 张量分解
在线阅读 下载PDF
融合加权动态权威度和兴趣度的专家推荐方法 被引量:3
3
作者 王甜 曾承 《小型微型计算机系统》 CSCD 北大核心 2016年第10期2150-2154,共5页
问答系统是目前热门的知识库构建方式之一.然而,当前的问答系统普遍采用专家自主回答或分类随机推荐方式,问题回答的准确率、及时性均较低,导致知识库中噪音知识泛滥.针对以上现象,提出一种基于加权动态权威度的专家推荐方法.该方法首... 问答系统是目前热门的知识库构建方式之一.然而,当前的问答系统普遍采用专家自主回答或分类随机推荐方式,问题回答的准确率、及时性均较低,导致知识库中噪音知识泛滥.针对以上现象,提出一种基于加权动态权威度的专家推荐方法.该方法首先通过分析专家历史回答内容,并将专家加权动态权威度与LDA模型相结合,构建专家偏好档案;然后及时、精准地将新问题推荐给潜在最适宜专家,从而达到提高问答系统知识库准确性的效果.为了验证本文方法的可行性和有效性,我们使用新浪爱问真实数据集进行分析实验,实验结果表明该方法能够有效地提高专家推荐的准确率. 展开更多
关键词 动态权威度 lda模型 专家推荐 知识库 问答系统
在线阅读 下载PDF
基于多模态的音乐推荐系统 被引量:4
4
作者 龚志 邵曦 《南京信息工程大学学报(自然科学版)》 CAS 2019年第1期68-76,共9页
使用传统协同过滤的方式进行推荐往往会忽视音乐底层特征.通过将音乐的音频特征与歌词信息进行多模态融合,并将融合后的特征信息作为协同过滤推荐的补充,提出了一种基于多模态的音乐推荐系统.主要探讨了音频特征与歌词信息的提取,并在... 使用传统协同过滤的方式进行推荐往往会忽视音乐底层特征.通过将音乐的音频特征与歌词信息进行多模态融合,并将融合后的特征信息作为协同过滤推荐的补充,提出了一种基于多模态的音乐推荐系统.主要探讨了音频特征与歌词信息的提取,并在提取歌词信息时利用LDA主题模型进行特征降维.针对多模态融合问题,使用一种特征级联早融合法(EFFC)融合方式,并将多模态融合后的结果与单模态结果进行了比较.对于结果的推荐,以多模态特征信息为依据建立用户兴趣模型,并将该模型通过LSTM神经网络,以过滤与优化协同推荐的用户组.结果表明,基于多模态的音乐推荐系统将推荐结果的误差项平方和(SSE)由传统的2. 009降至0. 388 6,验证了该方法的有效性. 展开更多
关键词 音乐推荐 协同过滤 lda主题模型 多模态融合 LSTM神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部