In-situ stress is a common stress in the exploration and development of oil reservoirs. Therefore, it is of great significance to study the propagation characteristics of borehole acoustic waves in fluid-saturated por...In-situ stress is a common stress in the exploration and development of oil reservoirs. Therefore, it is of great significance to study the propagation characteristics of borehole acoustic waves in fluid-saturated porous media under stress.Based on the acoustoelastic theory of fluid-saturated porous media, the field equation of fluid-saturated porous media under the conditions of confining pressure and pore pressure and the acoustic field formula of multipole source excitation in open hole are given. The influences of pore pressure and confining pressure on guided waves of multipole borehole acoustic field in fluid-saturated porous media are investigated. The numerical results show that the phase velocity and excitation intensity of guided wave increase significantly under the confining pressure. For a given confining pressure, the phase velocity of the guided wave decreases with pore pressure increasing. The excitation intensity of guided wave increases at low frequency and then decreases at high frequency with pore pressure increasing, except for that of Stoneley wave which decreases in the whole frequency range. These results will help us get an insight into the influences of confining pressure and pore pressure on the acoustic field of multipole source in borehole around fluid-saturated porous media.展开更多
It is widely accepted that the heart current source can be reduced into a current multipole. By adopting three linear inverse methods, the cardiac magnetic imaging is achieved in this article based on the current mult...It is widely accepted that the heart current source can be reduced into a current multipole. By adopting three linear inverse methods, the cardiac magnetic imaging is achieved in this article based on the current multipole model expanded to the first order terms. This magnetic imaging is realized in a reconstruction plane in the centre of human heart, where the current dipole array is employed to represent realistic cardiac current distribution. The current multipole as testing source generates magnetic fields in the measuring plane, serving as inputs of cardiac magnetic inverse problem. In the heart-torso model constructed by boundary element method, the current multipole magnetic field distribution is compared with that in the homogeneous infinite space, and also with the single current dipole magnetic field distribution. Then the minimum-norm least-squares (MNLS) method, the optimal weighted pseudoinverse method (OWPIM), and the optimal constrained linear inverse method (OCLIM) are selected as the algorithms for inverse computation based on current multipole model innovatively, and the imaging effects of these three inverse methods are compared. Besides, two reconstructing parameters, residual and mean residual, are also discussed, and their trends under MNLS, OWPIM and OCLIM each as a function of SNR are obtained and compared.展开更多
A 16-pole superconducting multipole wiggler with a large gap of 68 mm was designed and fabricated to serve as a multipole wiggler for HEPS-TF.The wiggler consists of 16 pairs of NbTi superconducting coils with a perio...A 16-pole superconducting multipole wiggler with a large gap of 68 mm was designed and fabricated to serve as a multipole wiggler for HEPS-TF.The wiggler consists of 16 pairs of NbTi superconducting coils with a period length of 170 mm,and its maximum peak field is 2.6 Tesla.In magnet design,magnet poles were optimized.Furthermore,the Lorentz force on the coils and electromagnetic force between the upper and lower halves were computed and analyzed along with the stored energy and inductance at different currents.To enhance the critical current of the magnet coil,all the pole coils selected for the magnet exhibited excellent performance,and appropriate prestress derived from the coil force analysis was applied to the pole coils during magnet assembly.The entire magnet structure was immersed in 4.2-K liquid helium in the cryostat cooled solely by four two-stage cryocoolers,and the performance test of the superconducting wiggler was appropriately completed.Based on the measured results,the first and second field integrals on the axis of the superconducting wiggler were significantly improved at different field levels after the compensation of the corrector coils.Subsequently,the wiggler was successfully installed in the storage ring of BEPCII operation with beams.展开更多
In the electron or x-ray scattering experiment,the measured spectra at larger momentum transfer are dominated by the electric dipole-forbidden transitions,while the corresponding selection rules for triatomic molecule...In the electron or x-ray scattering experiment,the measured spectra at larger momentum transfer are dominated by the electric dipole-forbidden transitions,while the corresponding selection rules for triatomic molecules have not been clearly elucidated.In this work,based on the molecular point group,the selection rules for the electric multipolarities of the electronic transitions of triatomic molecules are derived and summarized into several tables with the variation of molecular geometry in the transition process being considered.Based on the summarized selection rules,the electron energy loss spectra of H2O,CO2,and N2O are identified,and the momentum transfer dependence behaviors of their valence-shell excitations are explained.展开更多
There is a large class of problems in the field of fluid structure interaction where higher-order boundary conditions arise for a second-order partial differential equation. Various methods are being used to tackle th...There is a large class of problems in the field of fluid structure interaction where higher-order boundary conditions arise for a second-order partial differential equation. Various methods are being used to tackle these kind of mixed boundary-value problems associated with the Laplace’s equation (or Helmholtz equation) arising in the study of waves propagating through solids or fluids. One of the widely used methods in wave structure interaction is the multipole expansion method. This expansion involves a general combination of a regular wave, a wave source, a wave dipole and a regular wave-free part. The wave-free part can be further expanded in terms of wave-free multipoles which are termed as wave-free potentials. These are singular solutions of Laplace’s equation or two-dimensional Helmholz equation. Construction of these wave-free potentials and multipoles are presented here in a systematic manner for a number of situations such as two-dimensional non-oblique and oblique waves, three dimensional waves in two-layer fluid with free surface condition with higher order partial derivative are considered. In particular, these are obtained taking into account of the effect of the presence of surface tension at the free surface and also in the presence of an ice-cover modelled as a thin elastic plate. Also for limiting case, it can be shown that the multipoles and wave-free potential functions go over to the single layer multipoles and wave-free potential.展开更多
The effect of multipole resonance in the interaction between a spherical metallic nanoparticle (MNP) and an emitting dipole is studied with the Mie theory. The results show that the absorption peak of the MNP with r...The effect of multipole resonance in the interaction between a spherical metallic nanoparticle (MNP) and an emitting dipole is studied with the Mie theory. The results show that the absorption peak of the MNP with respect to the field of the emitting dipole is blue-shifted with the decrease of the spacing between MNP and emitting dipole due to the enhanced multipole resonance. At a short distance, the enhanced multipole terms of scattering are not obvious compared with the dipole term. For the decay rate of the emitting dipole, multipole resonance brings about the enhancement of it largely at short spacing. For the radiative decay rate, the behavior is quite different. The dipole term is dominant at a short spacing, and the multipole term is dominant at a larger spacing.展开更多
A small unbalanced maglletron atom source with multipole cusp magnetic field anode is described. The co-axial magnetron principle is extended to the circularplanar magnetron atom source, which raises the efficiency of...A small unbalanced maglletron atom source with multipole cusp magnetic field anode is described. The co-axial magnetron principle is extended to the circularplanar magnetron atom source, which raises the efficiency of sputtering target areaup to 60%. The multipole magnetic field is put in the anode, which makes theunbalanced magnetron atomsource run in a higher discharge current at a lower arcvoltage condition. Meanwhile, the sputtering atoms through out the anode can beionized partially, because the electron reaching the anode have to suffer multiplecollisions in order to advallce across the multipole magnetic field lines in the anode,which enhances the chemical reactivity of the secting atoms in film growth andimprove the property of film depositing.展开更多
Currently,three types of superconducting quadrupole magnets are used in particle accelerators:cos 2θ,CCT,and serpentine.However,all three coil configurations have complex spatial geometries,which make magnet manufact...Currently,three types of superconducting quadrupole magnets are used in particle accelerators:cos 2θ,CCT,and serpentine.However,all three coil configurations have complex spatial geometries,which make magnet manufacturing and strain-sensitive superconductor applications difficult.Compared with the three existing quadrupole coils,the racetrack quadrupole coil has a simple shape and manufacturing process,but there have been few theoretical studies.In this paper,the two-dimensional and three-dimensional analytical expressions for the magnetic field in coil-dominated racetrack superconducting quadrupole magnets are presented.The analytical expressions of the field harmonics and gradient are fully resolved and depend only on the geometric parameters of the coil and current density.Then,a genetic algorithm is applied to obtain a solution for the coil geometry parameters with field harmonics on the order of 10^(-4).Finally,considering the practical engineering needs of the accelerator interaction region,electromagnetic design examples of racetrack quadrupole magnets with high gradients,large apertures,and small apertures are described,and the application prospects of racetrack quadrupole coils are analyzed.展开更多
An index-guiding photonic crystal fibre with a small hole in the core is fabricated. The simulated results show that the first higher order mode possesses two zero-dispersion wavelengths, and the phase-matching is pos...An index-guiding photonic crystal fibre with a small hole in the core is fabricated. The simulated results show that the first higher order mode possesses two zero-dispersion wavelengths, and the phase-matching is possible in the anomalous dispersion regime between the two zero-dispersion wavelengths. Using 200 fs Ti: sapphire laser of 820, 830 and 840nm, the anti-Stokes line around 530nm can be generated efficiently. The maximum ratio of the anti-Stokes signal energy to the pump component in the output spectrum is estimated to be 1.03 and the conversion efficiency is above 50%.展开更多
Nonscattering optical anapole condition is corresponding to the excitation of radiationless field distributions in open resonators,which offers new degrees of freedom for tailoring light-matter interaction.Conventiona...Nonscattering optical anapole condition is corresponding to the excitation of radiationless field distributions in open resonators,which offers new degrees of freedom for tailoring light-matter interaction.Conventional mechanisms for achieving such a condition relies on sophisticated manipulation of electromagnetic multipolar moments of all orders to guarantee superpositions of suppressed moment strengths at the same wavelength.In contrast,here we report on the excitation of optical radiationless anapole hidden in a resonant state of a Si nanoparticle utilizing a tightly focused radially polarized(RP)beam.The coexistence of magnetic resonant state and anapole condition at the same wavelength further enables the triggering of resonant state by a tightly focused azimuthally polarized(AP)beam whose corresponding electric multipole coefficient could be zero.As a result,high contrast inter-transition between radiationless anapole condition and ideal magnetic resonant scattering can be achieved experimentally in visible spectrum.The proposed mechanism is general which can be realized in different types of nanostructures.Our results showcase that the unique combination of structured light and structured Mie resonances could provide new degrees of freedom for tailoring light-matter interaction,which might shed new light on functional meta-optics.展开更多
The design, field quality optimization, multipole field analysis, and field measurement of a dipole for a newly developed superconducting proton cyclotron(SC200) beamline are presented in this paper. The maximum magne...The design, field quality optimization, multipole field analysis, and field measurement of a dipole for a newly developed superconducting proton cyclotron(SC200) beamline are presented in this paper. The maximum magnetic field of the dipole is 1.35 T; the bending radius is 1.6 m with a proton beam energy in the range of70–200 Me V. The magnetic field was calculated with 2 D and 3 D simulations, and measured with a Hall mapping system. The pole shim and end chamfer were optimized to improve the field quality. Based on the simulated results,the multipole field components in the good-field region were studied to evaluate the field quality. The results showed that the field quality is better than ± 5 × 10^(-4) at1.35 T with shimming and chamfering. For the transverse field homogeneity, the third-order(B3) and fifth-order(B5)components should be controlled with symmetrical shims.The second-order(B2) component was the main disturbance for the integral field homogeneity; it could be improved with an end chamfer. The magnet manufacturing and field measurement were performed in this project. The measurement results demonstrated that the magnetic design and field quality optimization of the 45° dipole magnet can achieve the desired high field quality and satisfy the physical requirements.展开更多
We report the results of our investigation on the loss property of a birefringent photonic crystal fibre (PCF) based on a particular periodic arrangement of air-holes and pure silica. The structure of the birefringe...We report the results of our investigation on the loss property of a birefringent photonic crystal fibre (PCF) based on a particular periodic arrangement of air-holes and pure silica. The structure of the birefringent PCF, whose air-hole diameter in one ring is always larger than the next inner ring, presents an obviously low confinement loss than the one whose air-hole (except those on the horizontal line) diameter is constant. It is shown from numerical results that a four-ring PCF with birefringenee B=5×10^-4 and fast axis confinement loss of 4.5×10^-3 dB/km at wavelength of 1.55μm can be designed.展开更多
The multipole moment method not only conduces to the understanding of the deformation of the space-time, but also serves as an effective tool to approximately solve the Einstein field equation with. However, the usual...The multipole moment method not only conduces to the understanding of the deformation of the space-time, but also serves as an effective tool to approximately solve the Einstein field equation with. However, the usual multipole moments are recursively determined by a sequence of symmetric and trace-free tensors, which is inconvenient for practical resolution. In this paper, we develop a simplified procedure to generate the series solutions to the metric of the stationary vacuum with axisymmetry, and show its validity. In order to understand the free parameters in the solution, we propose to take the Schwarzschild metric as a standard ruler, and some well- known examples are analysed and compared with the series solutions in detail.展开更多
Based on the combined tangential formulation of surface integral equation, a fast algo- rithm is presented for calculating electromagnetic scattering from electrically large 3D homogeneous objects. In the algorithm, t...Based on the combined tangential formulation of surface integral equation, a fast algo- rithm is presented for calculating electromagnetic scattering from electrically large 3D homogeneous objects. In the algorithm, the lower triangular approximate Schur preconditioner is combined with the multilevel fast multipole algorithm (MLFMA). The coefficient matrix of the near-field coupling element is selected to set up the approximate matrix. For large problems, the incomplete LU factori- zation with dual threshold (ILUT) has better performance than sparse approximate inverse (SAI) of accelerating the convergence of the generalized minimal residual method ( GMRES ) iteration. Nu- merical experiments validate the efficiency and robustness of the presented fast algorithm for homo- geneous dielectric objects.展开更多
Understanding the sea surface scattering process is very important in the development of models to detect the target above or under the surface. In this paper, both the analytical and the numerical methods applied in ...Understanding the sea surface scattering process is very important in the development of models to detect the target above or under the surface. In this paper, both the analytical and the numerical methods applied in sea surface scattering are summarized. Some important problems concerned in this field are discussed. For numerical study, edge effect brings artificial nonrealistic scattering and therefore must be suppressed. Different edge treatment methods are compared in this paper. Scattering of breaking wave surface at very low grazing angle always needs more attentions than other scattering problems. Some numerical results show the existence of the special phenomena at very low grazing angle, for example, the "sea spikes" and the Doppler splitting.展开更多
Based on the transfer matrix method of exploring the circular cylindrical shell treated with active constrained layer damping(i.e., ACLD), combined with the analytical solution of the Helmholtz equation for a point ...Based on the transfer matrix method of exploring the circular cylindrical shell treated with active constrained layer damping(i.e., ACLD), combined with the analytical solution of the Helmholtz equation for a point source, a multi-point multipole virtual source simulation method is for the first time proposed for solving the acoustic radiation problem of a submerged ACLD shell. This approach, wherein some virtual point sources are assumed to be evenly distributed on the axial line of the cylindrical shell, and the sound pressure could be written in the form of the sum of the wave functions series with the undetermined coefficients, is demonstrated to be accurate to achieve the radiation acoustic pressure of the pulsating and oscillating spheres respectively. Meanwhile, this approach is proved to be accurate to obtain the radiation acoustic pressure for a stiffened cylindrical shell. Then, the chosen number of the virtual distributed point sources and truncated number of the wave functions series are discussed to achieve the approximate radiation acoustic pressure of an ACLD cylindrical shell. Applying this method, different radiation acoustic pressures of a submerged ACLD cylindrical shell with different boundary conditions, different thickness values of viscoelastic and piezoelectric layer, different feedback gains for the piezoelectric layer and coverage of ACLD are discussed in detail. Results show that a thicker thickness and larger velocity gain for the piezoelectric layer and larger coverage of the ACLD layer can obtain a better damping effect for the whole structure in general. Whereas, laying a thicker viscoelastic layer is not always a better treatment to achieve a better acoustic characteristic.展开更多
A method is presented to analyse the effect of structure random disturbances on the confinement loss and the chromatic dispersion characterizations of microstructured optical fibres, which combines multipole methods w...A method is presented to analyse the effect of structure random disturbances on the confinement loss and the chromatic dispersion characterizations of microstructured optical fibres, which combines multipole methods with the random statistics process. Some useful results to the fabrication of microstructured optical fibres have been obtained.展开更多
A kind of nested eccentric waveguide constructed with two cylindrical nanowires coated with graphene was designed.The mode characteristics of this waveguide were studied using the multipole method. It was found that t...A kind of nested eccentric waveguide constructed with two cylindrical nanowires coated with graphene was designed.The mode characteristics of this waveguide were studied using the multipole method. It was found that the three lowest modes(mode 0, mode 1 and mode 2) can be combined by the zero-order mode or/and the first-order modes of two single nanowires. Mode 0 has a higher figure of merit and the best performance among these modes within the parameter range of interest. The mode characteristics can be adjusted by changing the parameters of the waveguide. For example, the propagation length will be increased when the operating wavelength, the minimum spacing between the inner and outer cylinders, the inner cylinder radius and the Fermi energy are increased. However, when the outer cylinder radius, the dielectric constants of region Ⅰ, or the dielectric constants of region Ⅲ are increased, the opposite effect can be seen. These results are consistent with the results obtained using the finite element method(FEM). The waveguide structure designed in this paper is easy to fabricate and can be applied to the field of micro/nano sensing.展开更多
In this work,trapped mode frequencies are computed for a submerged horizontal circular cylinder with the hydrodynamic set-up involving an infinite depth three-layer incompressible fluid with layer-wise different densi...In this work,trapped mode frequencies are computed for a submerged horizontal circular cylinder with the hydrodynamic set-up involving an infinite depth three-layer incompressible fluid with layer-wise different densities.The impermeable cylinder is fully immersed in either the bottom layer or the upper layer.The effect of surface tension at the surface of separation is neglected.In this set-up,there exist three wave numbers:the lowest one on the free surface and the other two on the internal interfaces.For each wave number,there exist two modes for which trapped waves exist.The existence of these trapped modes is shown by numerical evidence.We investigate the variation of these trapped modes subject to change in the depth of the middle layer as well as the submergence depth.We show numerically that two-layer and single-layer results cannot be recovered in the double and single limiting cases of the density ratios tending to unity.The existence of trapped modes shows that in general,a radiation condition for the waves at infinity is insufficient for the uniqueness of the solution of the scattering problem.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.42074139)the Natural Science Foundation of Jilin Province,China (Grant No.20210101140JC)。
文摘In-situ stress is a common stress in the exploration and development of oil reservoirs. Therefore, it is of great significance to study the propagation characteristics of borehole acoustic waves in fluid-saturated porous media under stress.Based on the acoustoelastic theory of fluid-saturated porous media, the field equation of fluid-saturated porous media under the conditions of confining pressure and pore pressure and the acoustic field formula of multipole source excitation in open hole are given. The influences of pore pressure and confining pressure on guided waves of multipole borehole acoustic field in fluid-saturated porous media are investigated. The numerical results show that the phase velocity and excitation intensity of guided wave increase significantly under the confining pressure. For a given confining pressure, the phase velocity of the guided wave decreases with pore pressure increasing. The excitation intensity of guided wave increases at low frequency and then decreases at high frequency with pore pressure increasing, except for that of Stoneley wave which decreases in the whole frequency range. These results will help us get an insight into the influences of confining pressure and pore pressure on the acoustic field of multipole source in borehole around fluid-saturated porous media.
基金Project supported by the State Key Development Program for Basic Research of China(Grant No.2006CB601007)the National Natural Science Foundation of China(Grant No.10674006)the National High Technology Research and Development Program of China(Grant No.2007AA03Z238)
文摘It is widely accepted that the heart current source can be reduced into a current multipole. By adopting three linear inverse methods, the cardiac magnetic imaging is achieved in this article based on the current multipole model expanded to the first order terms. This magnetic imaging is realized in a reconstruction plane in the centre of human heart, where the current dipole array is employed to represent realistic cardiac current distribution. The current multipole as testing source generates magnetic fields in the measuring plane, serving as inputs of cardiac magnetic inverse problem. In the heart-torso model constructed by boundary element method, the current multipole magnetic field distribution is compared with that in the homogeneous infinite space, and also with the single current dipole magnetic field distribution. Then the minimum-norm least-squares (MNLS) method, the optimal weighted pseudoinverse method (OWPIM), and the optimal constrained linear inverse method (OCLIM) are selected as the algorithms for inverse computation based on current multipole model innovatively, and the imaging effects of these three inverse methods are compared. Besides, two reconstructing parameters, residual and mean residual, are also discussed, and their trends under MNLS, OWPIM and OCLIM each as a function of SNR are obtained and compared.
文摘A 16-pole superconducting multipole wiggler with a large gap of 68 mm was designed and fabricated to serve as a multipole wiggler for HEPS-TF.The wiggler consists of 16 pairs of NbTi superconducting coils with a period length of 170 mm,and its maximum peak field is 2.6 Tesla.In magnet design,magnet poles were optimized.Furthermore,the Lorentz force on the coils and electromagnetic force between the upper and lower halves were computed and analyzed along with the stored energy and inductance at different currents.To enhance the critical current of the magnet coil,all the pole coils selected for the magnet exhibited excellent performance,and appropriate prestress derived from the coil force analysis was applied to the pole coils during magnet assembly.The entire magnet structure was immersed in 4.2-K liquid helium in the cryostat cooled solely by four two-stage cryocoolers,and the performance test of the superconducting wiggler was appropriately completed.Based on the measured results,the first and second field integrals on the axis of the superconducting wiggler were significantly improved at different field levels after the compensation of the corrector coils.Subsequently,the wiggler was successfully installed in the storage ring of BEPCII operation with beams.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0402300)the National Natural Science Foundation of China(Grant No.U1732133)the Science Fund from Chinese Academy of Sciences(Grant No.11320101003)
文摘In the electron or x-ray scattering experiment,the measured spectra at larger momentum transfer are dominated by the electric dipole-forbidden transitions,while the corresponding selection rules for triatomic molecules have not been clearly elucidated.In this work,based on the molecular point group,the selection rules for the electric multipolarities of the electronic transitions of triatomic molecules are derived and summarized into several tables with the variation of molecular geometry in the transition process being considered.Based on the summarized selection rules,the electron energy loss spectra of H2O,CO2,and N2O are identified,and the momentum transfer dependence behaviors of their valence-shell excitations are explained.
文摘There is a large class of problems in the field of fluid structure interaction where higher-order boundary conditions arise for a second-order partial differential equation. Various methods are being used to tackle these kind of mixed boundary-value problems associated with the Laplace’s equation (or Helmholtz equation) arising in the study of waves propagating through solids or fluids. One of the widely used methods in wave structure interaction is the multipole expansion method. This expansion involves a general combination of a regular wave, a wave source, a wave dipole and a regular wave-free part. The wave-free part can be further expanded in terms of wave-free multipoles which are termed as wave-free potentials. These are singular solutions of Laplace’s equation or two-dimensional Helmholz equation. Construction of these wave-free potentials and multipoles are presented here in a systematic manner for a number of situations such as two-dimensional non-oblique and oblique waves, three dimensional waves in two-layer fluid with free surface condition with higher order partial derivative are considered. In particular, these are obtained taking into account of the effect of the presence of surface tension at the free surface and also in the presence of an ice-cover modelled as a thin elastic plate. Also for limiting case, it can be shown that the multipoles and wave-free potential functions go over to the single layer multipoles and wave-free potential.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61138004 and 61107068) and the National Basic Research Program of China (Grant No. 2012CB921904).
文摘The effect of multipole resonance in the interaction between a spherical metallic nanoparticle (MNP) and an emitting dipole is studied with the Mie theory. The results show that the absorption peak of the MNP with respect to the field of the emitting dipole is blue-shifted with the decrease of the spacing between MNP and emitting dipole due to the enhanced multipole resonance. At a short distance, the enhanced multipole terms of scattering are not obvious compared with the dipole term. For the decay rate of the emitting dipole, multipole resonance brings about the enhancement of it largely at short spacing. For the radiative decay rate, the behavior is quite different. The dipole term is dominant at a short spacing, and the multipole term is dominant at a larger spacing.
文摘A small unbalanced maglletron atom source with multipole cusp magnetic field anode is described. The co-axial magnetron principle is extended to the circularplanar magnetron atom source, which raises the efficiency of sputtering target areaup to 60%. The multipole magnetic field is put in the anode, which makes theunbalanced magnetron atomsource run in a higher discharge current at a lower arcvoltage condition. Meanwhile, the sputtering atoms through out the anode can beionized partially, because the electron reaching the anode have to suffer multiplecollisions in order to advallce across the multipole magnetic field lines in the anode,which enhances the chemical reactivity of the secting atoms in film growth andimprove the property of film depositing.
基金supported in part by the National Key Research and Development Program of China(No.2022YFA1603402)in part by the National Natural Science Foundation of China(No.11875272)。
文摘Currently,three types of superconducting quadrupole magnets are used in particle accelerators:cos 2θ,CCT,and serpentine.However,all three coil configurations have complex spatial geometries,which make magnet manufacturing and strain-sensitive superconductor applications difficult.Compared with the three existing quadrupole coils,the racetrack quadrupole coil has a simple shape and manufacturing process,but there have been few theoretical studies.In this paper,the two-dimensional and three-dimensional analytical expressions for the magnetic field in coil-dominated racetrack superconducting quadrupole magnets are presented.The analytical expressions of the field harmonics and gradient are fully resolved and depend only on the geometric parameters of the coil and current density.Then,a genetic algorithm is applied to obtain a solution for the coil geometry parameters with field harmonics on the order of 10^(-4).Finally,considering the practical engineering needs of the accelerator interaction region,electromagnetic design examples of racetrack quadrupole magnets with high gradients,large apertures,and small apertures are described,and the application prospects of racetrack quadrupole coils are analyzed.
基金Supported by the National Key Basic Research Programme of China under Grant No 2003CB314905, and the National Natural Science Foundation of China under Grant No 60637010.
文摘An index-guiding photonic crystal fibre with a small hole in the core is fabricated. The simulated results show that the first higher order mode possesses two zero-dispersion wavelengths, and the phase-matching is possible in the anomalous dispersion regime between the two zero-dispersion wavelengths. Using 200 fs Ti: sapphire laser of 820, 830 and 840nm, the anti-Stokes line around 530nm can be generated efficiently. The maximum ratio of the anti-Stokes signal energy to the pump component in the output spectrum is estimated to be 1.03 and the conversion efficiency is above 50%.
基金financial support from the National Key R&D Program of China (YS2018YFB110012)National Natural Science Foundation of China (NSFC) (Grant Nos. 11674130, 91750110, 61522504 and 61975067)+2 种基金Guangdong Provincial Innovation and Entrepreneurship Project (Grant 2016ZT06D081)Natural Science Foundation of Guangdong Province, China (Grant Nos. 2016A030306016, 2016TQ03X981 and 2016A030308010)Pearl River Nova Program of Guangzhou (No. 201806010040)
文摘Nonscattering optical anapole condition is corresponding to the excitation of radiationless field distributions in open resonators,which offers new degrees of freedom for tailoring light-matter interaction.Conventional mechanisms for achieving such a condition relies on sophisticated manipulation of electromagnetic multipolar moments of all orders to guarantee superpositions of suppressed moment strengths at the same wavelength.In contrast,here we report on the excitation of optical radiationless anapole hidden in a resonant state of a Si nanoparticle utilizing a tightly focused radially polarized(RP)beam.The coexistence of magnetic resonant state and anapole condition at the same wavelength further enables the triggering of resonant state by a tightly focused azimuthally polarized(AP)beam whose corresponding electric multipole coefficient could be zero.As a result,high contrast inter-transition between radiationless anapole condition and ideal magnetic resonant scattering can be achieved experimentally in visible spectrum.The proposed mechanism is general which can be realized in different types of nanostructures.Our results showcase that the unique combination of structured light and structured Mie resonances could provide new degrees of freedom for tailoring light-matter interaction,which might shed new light on functional meta-optics.
基金Hefei CAS Ion Medical and Technical Devices Co., Ltd. for their financial support of our research
文摘The design, field quality optimization, multipole field analysis, and field measurement of a dipole for a newly developed superconducting proton cyclotron(SC200) beamline are presented in this paper. The maximum magnetic field of the dipole is 1.35 T; the bending radius is 1.6 m with a proton beam energy in the range of70–200 Me V. The magnetic field was calculated with 2 D and 3 D simulations, and measured with a Hall mapping system. The pole shim and end chamfer were optimized to improve the field quality. Based on the simulated results,the multipole field components in the good-field region were studied to evaluate the field quality. The results showed that the field quality is better than ± 5 × 10^(-4) at1.35 T with shimming and chamfering. For the transverse field homogeneity, the third-order(B3) and fifth-order(B5)components should be controlled with symmetrical shims.The second-order(B2) component was the main disturbance for the integral field homogeneity; it could be improved with an end chamfer. The magnet manufacturing and field measurement were performed in this project. The measurement results demonstrated that the magnetic design and field quality optimization of the 45° dipole magnet can achieve the desired high field quality and satisfy the physical requirements.
文摘We report the results of our investigation on the loss property of a birefringent photonic crystal fibre (PCF) based on a particular periodic arrangement of air-holes and pure silica. The structure of the birefringent PCF, whose air-hole diameter in one ring is always larger than the next inner ring, presents an obviously low confinement loss than the one whose air-hole (except those on the horizontal line) diameter is constant. It is shown from numerical results that a four-ring PCF with birefringenee B=5×10^-4 and fast axis confinement loss of 4.5×10^-3 dB/km at wavelength of 1.55μm can be designed.
文摘The multipole moment method not only conduces to the understanding of the deformation of the space-time, but also serves as an effective tool to approximately solve the Einstein field equation with. However, the usual multipole moments are recursively determined by a sequence of symmetric and trace-free tensors, which is inconvenient for practical resolution. In this paper, we develop a simplified procedure to generate the series solutions to the metric of the stationary vacuum with axisymmetry, and show its validity. In order to understand the free parameters in the solution, we propose to take the Schwarzschild metric as a standard ruler, and some well- known examples are analysed and compared with the series solutions in detail.
基金Supported by the National Natural Science Foundation of China(60901005)
文摘Based on the combined tangential formulation of surface integral equation, a fast algo- rithm is presented for calculating electromagnetic scattering from electrically large 3D homogeneous objects. In the algorithm, the lower triangular approximate Schur preconditioner is combined with the multilevel fast multipole algorithm (MLFMA). The coefficient matrix of the near-field coupling element is selected to set up the approximate matrix. For large problems, the incomplete LU factori- zation with dual threshold (ILUT) has better performance than sparse approximate inverse (SAI) of accelerating the convergence of the generalized minimal residual method ( GMRES ) iteration. Nu- merical experiments validate the efficiency and robustness of the presented fast algorithm for homo- geneous dielectric objects.
文摘Understanding the sea surface scattering process is very important in the development of models to detect the target above or under the surface. In this paper, both the analytical and the numerical methods applied in sea surface scattering are summarized. Some important problems concerned in this field are discussed. For numerical study, edge effect brings artificial nonrealistic scattering and therefore must be suppressed. Different edge treatment methods are compared in this paper. Scattering of breaking wave surface at very low grazing angle always needs more attentions than other scattering problems. Some numerical results show the existence of the special phenomena at very low grazing angle, for example, the "sea spikes" and the Doppler splitting.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.1116200111502056+3 种基金and 51105083)the Natural Science Foundation of Guangxi Zhuang Autonomous Region,China(Grant No.2012GXNSFAA053207)the Doctor Foundation of Guangxi University of Science and Technology,China(Grant No.12Z09)the Development Project of the Key Laboratory of Guangxi Zhuang Autonomous Region,China(Grant No.1404544)
文摘Based on the transfer matrix method of exploring the circular cylindrical shell treated with active constrained layer damping(i.e., ACLD), combined with the analytical solution of the Helmholtz equation for a point source, a multi-point multipole virtual source simulation method is for the first time proposed for solving the acoustic radiation problem of a submerged ACLD shell. This approach, wherein some virtual point sources are assumed to be evenly distributed on the axial line of the cylindrical shell, and the sound pressure could be written in the form of the sum of the wave functions series with the undetermined coefficients, is demonstrated to be accurate to achieve the radiation acoustic pressure of the pulsating and oscillating spheres respectively. Meanwhile, this approach is proved to be accurate to obtain the radiation acoustic pressure for a stiffened cylindrical shell. Then, the chosen number of the virtual distributed point sources and truncated number of the wave functions series are discussed to achieve the approximate radiation acoustic pressure of an ACLD cylindrical shell. Applying this method, different radiation acoustic pressures of a submerged ACLD cylindrical shell with different boundary conditions, different thickness values of viscoelastic and piezoelectric layer, different feedback gains for the piezoelectric layer and coverage of ACLD are discussed in detail. Results show that a thicker thickness and larger velocity gain for the piezoelectric layer and larger coverage of the ACLD layer can obtain a better damping effect for the whole structure in general. Whereas, laying a thicker viscoelastic layer is not always a better treatment to achieve a better acoustic characteristic.
文摘A method is presented to analyse the effect of structure random disturbances on the confinement loss and the chromatic dispersion characterizations of microstructured optical fibres, which combines multipole methods with the random statistics process. Some useful results to the fabrication of microstructured optical fibres have been obtained.
基金Project supported by the Natural Science Foundation of Shanxi Province, China (Grant Nos. 201901D111159 and 2021D20021310)the Shanxi Scholarship Council of China (Grant No. HGKY2019068)。
文摘A kind of nested eccentric waveguide constructed with two cylindrical nanowires coated with graphene was designed.The mode characteristics of this waveguide were studied using the multipole method. It was found that the three lowest modes(mode 0, mode 1 and mode 2) can be combined by the zero-order mode or/and the first-order modes of two single nanowires. Mode 0 has a higher figure of merit and the best performance among these modes within the parameter range of interest. The mode characteristics can be adjusted by changing the parameters of the waveguide. For example, the propagation length will be increased when the operating wavelength, the minimum spacing between the inner and outer cylinders, the inner cylinder radius and the Fermi energy are increased. However, when the outer cylinder radius, the dielectric constants of region Ⅰ, or the dielectric constants of region Ⅲ are increased, the opposite effect can be seen. These results are consistent with the results obtained using the finite element method(FEM). The waveguide structure designed in this paper is easy to fabricate and can be applied to the field of micro/nano sensing.
文摘In this work,trapped mode frequencies are computed for a submerged horizontal circular cylinder with the hydrodynamic set-up involving an infinite depth three-layer incompressible fluid with layer-wise different densities.The impermeable cylinder is fully immersed in either the bottom layer or the upper layer.The effect of surface tension at the surface of separation is neglected.In this set-up,there exist three wave numbers:the lowest one on the free surface and the other two on the internal interfaces.For each wave number,there exist two modes for which trapped waves exist.The existence of these trapped modes is shown by numerical evidence.We investigate the variation of these trapped modes subject to change in the depth of the middle layer as well as the submergence depth.We show numerically that two-layer and single-layer results cannot be recovered in the double and single limiting cases of the density ratios tending to unity.The existence of trapped modes shows that in general,a radiation condition for the waves at infinity is insufficient for the uniqueness of the solution of the scattering problem.