This paper investigates the fundamental data detection problem with burst interference in massive multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM) systems. In particular, burst inte...This paper investigates the fundamental data detection problem with burst interference in massive multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM) systems. In particular, burst interference may occur only on data symbols but not on pilot symbols, which means that interference information cannot be premeasured. To cancel the burst interference, we first revisit the uplink multi-user system and develop a matrixform system model, where the covariance pattern and the low-rank property of the interference matrix is discussed. Then, we propose a turbo message passing based burst interference cancellation(TMP-BIC) algorithm to solve the data detection problem, where the constellation information of target data is fully exploited to refine its estimate. Furthermore, in the TMP-BIC algorithm, we design one module to cope with the interference matrix by exploiting its lowrank property. Numerical results demonstrate that the proposed algorithm can effectively mitigate the adverse effects of burst interference and approach the interference-free bound.展开更多
Utilizing channel reciprocity, time reversal(TR) technique increases the signal-to-noise ratio(SNR) at the receiver with very low transmitter complexity in complex multipath environment. Present research works abo...Utilizing channel reciprocity, time reversal(TR) technique increases the signal-to-noise ratio(SNR) at the receiver with very low transmitter complexity in complex multipath environment. Present research works about TR multiple-input multiple-output(MIMO) communication all focus on the system implementation and network building. The aim of this work is to analyze the influence of antenna coupling on the capacity of wideband TR MIMO system, which is a realistic question in designing a practical communication system. It turns out that antenna coupling stabilizes the capacity in a small variation range with statistical wideband channel response. Meanwhile, antenna coupling only causes a slight detriment to the channel capacity in a wideband TR MIMO system. Comparatively, uncorrelated stochastic channels without coupling exhibit a wider range of random capacity distribution which greatly depends on the statistical channel. The conclusions drawn from information difference entropy theory provide a guideline for designing better high-performance wideband TR MIMO communication systems.展开更多
Hybrid precoding and combining have been considered as a promising technology, which can provide a compromise between hardware complexity and system performance in millimeter wave multiple-input multiple-output system...Hybrid precoding and combining have been considered as a promising technology, which can provide a compromise between hardware complexity and system performance in millimeter wave multiple-input multiple-output systems. However, most existing hybrid precoder and combiner designs generally assume that infinite resolution phase shifters(PSs) are used to produce the analog beamformers. In a practical scene, the design with accurate PSs can lead to high hardware cost and power consumption. In this paper, we investigate the hybrid precoder and combiner design with finite resolution PSs in millimeter wave systems. We employ alternate optimization as the main strategy to jointly design analog precoder and combiner. In addition, we propose a low complexity algorithm, where the analog beamformers are implemented only by finite resolution PSs to maximize spectral efficiency. Then, the digital precoder and combiner are designed based on the obtained analog beamformers to improve the spectral efficiency. Finally, simulation results and mathematical analysis show that the proposed algorithm with low-resolution PSs can achieve near-optimal performance and have low complexity.展开更多
This paper addresses the direction of arrival (DOA) estimation problem for the co-located multiple-input multiple- output (MIMO) radar with random arrays. The spatially distributed sparsity of the targets in the b...This paper addresses the direction of arrival (DOA) estimation problem for the co-located multiple-input multiple- output (MIMO) radar with random arrays. The spatially distributed sparsity of the targets in the background makes com- pressive sensing (CS) desirable for DOA estimation. A spatial CS framework is presented, which links the DOA estimation problem to support recovery from a known over-complete dictionary. A modified statistical model is developed to ac- curately represent the intra-block correlation of the received signal. A structural sparsity Bayesian learning algorithm is proposed for the sparse recovery problem. The proposed algorithm, which exploits intra-signal correlation, is capable being applied to limited data support and low signal-to-noise ratio (SNR) scene. Furthermore, the proposed algorithm has less computation load compared to the classical Bayesian algorithm. Simulation results show that the proposed algorithm has a more accurate DOA estimation than the traditional multiple signal classification (MUSIC) algorithm and other CS recovery algorithms.展开更多
Massive multiple-input multiple-output(MIMO) system is capable of substantially improving the spectral efficiency as well as the capacity of wireless networks relying on equipping a large number of antenna elements at...Massive multiple-input multiple-output(MIMO) system is capable of substantially improving the spectral efficiency as well as the capacity of wireless networks relying on equipping a large number of antenna elements at the base stations. However, the excessively high computational complexity of the signal detection in massive MIMO systems imposes a significant challenge for practical hardware implementations. In this paper, we propose a novel minimum mean square error(MMSE) signal detection using the accelerated overrelaxation(AOR) iterative method without complicated matrix inversion, which is capable of reducing the overall complexity of the classical MMSE algorithm by an order of magnitude. Simulation results show that the proposed AOR-based method can approach the conventional MMSE signal detection with significant complexity reduction.展开更多
In Multiple-Input Multiple-Out (MIMO) systems, the user selection algorithm plays an important role in the realization of multiplexing gain. In this paper, an improved Semi-orthogonal User Selection algorithm based ...In Multiple-Input Multiple-Out (MIMO) systems, the user selection algorithm plays an important role in the realization of multiplexing gain. In this paper, an improved Semi-orthogonal User Selection algorithm based on condition number is proposed. Besides, a new MIMO pre- coding scheme is designed. The proposed SUS- CN (SUS with condition number) algorithm outperforms the SUS algorithm for the selection of users with better matrix inversion property, thus a higher information rate for selected user pair is achieved. The designed MIMO precoding matrix brings benefits of the power equality at transmitted terminals, the limited dynamic range of the power over time, and a better power efficiency. The simulation results give the key insights into the im- pact of the different condition number value and users on the sum-rate capacity.展开更多
In this paper, a new observation equation of non-Gaussian frequency selective fading Bell Labs layered space time (BLAST) architecture system is proposed, which is used for frequency selective fading channels and no...In this paper, a new observation equation of non-Gaussian frequency selective fading Bell Labs layered space time (BLAST) architecture system is proposed, which is used for frequency selective fading channels and non-Gaussian noise in an application environment of BLAST system. With othogonal matrix triangularization (QR decomposition) of the channel matrix, the static observation equation of frequency selective fading BLAST system is transformed into a dynamic state space model, and then the particle filter is used for space-time layered detection. Making the full use of the finite alphabet of the digital modulation communication signal, the optimal proposal distribution can be chosen to produce particle and update the weight. Incorporated with current method of reducing error propagation, a new space-time layered detection algorithm is proposed. Simulation result shows the validity of the proposed algorithm.展开更多
In this paper, a generalized three-dimensional(3D) scattering channel model for macrocellular land mobile environments is considered. This model simultaneously describes angular arrival of multi-path signals in the az...In this paper, a generalized three-dimensional(3D) scattering channel model for macrocellular land mobile environments is considered. This model simultaneously describes angular arrival of multi-path signals in the azimuth and elevation planes in an environment where uniformly distributed scatterers are assumed to be present in hemispheroids around the base station(BS) and mobile station(MS). Using this channel model, we first derive the closed-form expression for the joint and marginal probability density functions of the angle-of-arrival and time-of-arrival measured at the BS and the MS corresponding to the azimuth and elevation angles. Next, we derive an expression for the Doppler spectral distribution caused by motion of the MSs. Furthermore, we analyze the performance of multiple-input multiple-output antenna systems numerically. The results show that the proposed 3D scattering channel model performs better than previously proposed two-dimensional(2D) models for indoor and outdoor environments. We compare the results with previous scattering channel models and measurement results to validate the generalizability of our model.展开更多
To improve the deteriorated capacity gain and source recovery performance due to channel mismatch problem,this paper reports a research about blind separation method against channel mismatch in multiple-input multiple...To improve the deteriorated capacity gain and source recovery performance due to channel mismatch problem,this paper reports a research about blind separation method against channel mismatch in multiple-input multiple-output(MIMO) systems.The channel mismatch problem can be described as a channel with bounded fluctuant errors due to channel distortion or channel estimation errors.The problem of blind signal separation/extraction with channel mismatch is formulated as a cost function of blind source separation(BSS) subject to the second-order cone constraint,which can be called as second-order cone programing optimization problem.Then the resulting cost function is solved by approximate negentropy maximization using quasi-Newton iterative methods for blind separation/extraction source signals.Theoretical analysis demonstrates that the proposed algorithm has low computational complexity and improved performance advantages.Simulation results verify that the capacity gain and bit error rate(BER) performance of the proposed blind separation method is superior to those of the existing methods in MIMO systems with channel mismatch problem.展开更多
Filter-bank multicarrier (FBMC) with offset quadrature amplitude modulation (OQAM) is a candidate waveform for future wireless communications due to its advantages over orthogonal frequency division multiplexing ...Filter-bank multicarrier (FBMC) with offset quadrature amplitude modulation (OQAM) is a candidate waveform for future wireless communications due to its advantages over orthogonal frequency division multiplexing (OFDM) systems. However, because of or-thogonality in real field and the presence of imaginary intrinsic interference, channel estimation in FBMC is not as straightforward as OFDM systems especially in multiple antenna scenarios. In this paper, we propose a channel estimation method which employs intrinsic interference cancellation at the transmitter side. The simulation results show that this method has less pilot overhead, less peak to average power ratio (PAPR), better bit error rate (BER), and better mean square error (MSE) performance compared to the well-known intrinsic approximation methods (IAM).展开更多
A sparse channel estimation method is proposed for doubly selective channels in multiple- input multiple-output ( MIMO ) orthogonal frequency division multiplexing ( OFDM ) systems. Based on the basis expansion mo...A sparse channel estimation method is proposed for doubly selective channels in multiple- input multiple-output ( MIMO ) orthogonal frequency division multiplexing ( OFDM ) systems. Based on the basis expansion model (BEM) of the channel, the joint-sparsity of MIMO-OFDM channels is described. The sparse characteristics enable us to cast the channel estimation as a distributed compressed sensing (DCS) problem. Then, a low complexity DCS-based estimation scheme is designed. Compared with the conventional compressed channel estimators based on the compressed sensing (CS) theory, the DCS-based method has an improved efficiency because it reconstructs the MIMO channels jointly rather than addresses them separately. Furthermore, the group-sparse structure of each single channel is also depicted. To effectively use this additional structure of the sparsity pattern, the DCS algorithm is modified. The modified algorithm can further enhance the estimation performance. Simulation results demonstrate the superiority of our method over fast fading channels in MIMO-OFDM systems.展开更多
Pilot contamination can bring up a grave impairment in the performance of massive multiple-input multiple-output(MIMO)systems.In this paper,an improved time-shifted pilot scheme is proposed to reduce the pilot contami...Pilot contamination can bring up a grave impairment in the performance of massive multiple-input multiple-output(MIMO)systems.In this paper,an improved time-shifted pilot scheme is proposed to reduce the pilot contamination,where orthogonal pilots are employed in the same group to eliminate the residual intragroup interference existing in the original time-shifted pilot scheme.Meanwhile,the rigorous closed-form expressions of both downlink and uplink transmission rates with a finite number of antennas are derived,and it is shown that the intra-group interference can be completely eliminated by the proposed scheme.Simulation results demonstrate that both downlink and uplink transmission rates are significantly improved by employing the proposed scheme.展开更多
Location-based services have become an important part of the daily life.Fingerprint localization has been put forward to overcome the shortcomings of the traditional positioning algorithms in indoor scenario and rich ...Location-based services have become an important part of the daily life.Fingerprint localization has been put forward to overcome the shortcomings of the traditional positioning algorithms in indoor scenario and rich scattering environment.In this paper,a single-site multiple-input multiple-output(MIMO)orthogonal frequency division multiplexing(OFDM)system is modeled,from which an angle delay channel power matrix(ADCPM)is extracted.Considering the changing environment,auto encoders are used to generate new fingerprints based on ADCPM fingerprints to improve the robustness of the fingerprints.When the scattering environment has changed beyond a certain extent,the robustness will not be able to make up for the positioning error.Under this circumstance,an updating of the fingerprint database is imperative.A new fingerprint database updating algorithm which combines a new clustering method and an updating rule based on probability is proposed.Simulation results show the desirable performance of the proposed methods.展开更多
The high reliability of the communication system is critical in metro and mining applications for personal safety,channel optimization,and improving operational performance.This paper surveys the progress of wireless ...The high reliability of the communication system is critical in metro and mining applications for personal safety,channel optimization,and improving operational performance.This paper surveys the progress of wireless communication systems in underground environments such as tunnels and mines from 1920 to 2022,including the evolution of primitive technology,advancements in channel modelling,and realization of various wireless propagation channels.In addition,the existing and advanced channel modeling strategies,which include the evolution of different technologies and their applications;mathematical,analytical,and experimental techniques for radio propagation;and significance of the radiation characteristics,antenna placement,and physical environment of multiple-input multiple-output(MIMO)communication systems,are analyzed.The given study introduces leaky coaxial cable(LCX)and distributed antenna system(DAS)designs for improving narrowband and wideband channel capacity.The paper concludes by figuring out open research areas for the future technologies.展开更多
Recently,cell-free(CF)massive multipleinput multiple-output(MIMO)becomes a promising architecture for the next generation wireless communication system,where a large number of distributed access points(APs)are deploye...Recently,cell-free(CF)massive multipleinput multiple-output(MIMO)becomes a promising architecture for the next generation wireless communication system,where a large number of distributed access points(APs)are deployed to simultaneously serve multiple user equipments(UEs)for improved performance.Meanwhile,a clustered CF system is considered to tackle the backhaul overhead issue in the huge connection network.In this paper,taking into account the more realistic mobility scenarios,we propose a hybrid small-cell(SC)and clustered CF massive MIMO system through classifications of the UEs and APs,and constructing the corresponding pairs to run in SC or CF mode.A joint initial AP selection of this paradigm for all the UEs is firstly proposed,which is based on the statistics of estimated channel.Then,closed-form expressions of the downlink achievable rates for both the static and moving UEs are provided under Ricean fading channel and Doppler shift effect.We also develop a semi-heuristic search algorithm to deal with the AP selection for the moving UEs by maximizing the weight average achievable rate.Numerical results demonstrate the performance gains and effective rates balancing of the proposed system.展开更多
Codebooks have been indispensable for wireless communication standard since the first release of the Long-Term Evolution in 2009.They offer an efficient way to acquire the channel state information(CSI)for multiple an...Codebooks have been indispensable for wireless communication standard since the first release of the Long-Term Evolution in 2009.They offer an efficient way to acquire the channel state information(CSI)for multiple antenna systems.Nowadays,a codebook is not limited to a set of pre-defined precoders,it refers to a CSI feedback framework,which is more and more sophisticated.In this paper,we review the codebooks in 5G New Radio(NR)standards.The codebook timeline and the evolution trend are shown.Each codebook is elaborated with its motivation,the corresponding feedback mechanism,and the format of the precoding matrix indicator.Some insights are given to help grasp the underlying reasons and intuitions of these codebooks.Finally,we point out some unresolved challenges of the codebooks for future evolution of the standards.In general,this paper provides a comprehensive review of the codebooks in 5G NR and aims to help researchers understand the CSI feedback schemes from a standard and industrial perspective.展开更多
The performance of uplink distributed massive multiple-input multiple-output(MIMO)systems with crosslayer design(CLD) is investigated over Rayleigh fading channel, which combines the discrete rate adaptive modulation ...The performance of uplink distributed massive multiple-input multiple-output(MIMO)systems with crosslayer design(CLD) is investigated over Rayleigh fading channel, which combines the discrete rate adaptive modulation with truncated automatic repeat request. By means of the performance analysis, the closed-form expressions of average packet error rate(APER)and overall average spectral efficiency(ASE)of distributed massive MIMO systems with CLD are derived based on the conditional probability density function of each user’s approximate effective signal-to-noise ratio(SNR)and the switching thresholds under the target packet loss rate(PLR)constraint.With these results,using the approximation of complementary error functions,the approximate APER and overall ASE are also deduced. Simulation results illustrate that the obtained theoretical ASE and APER can match the corresponding simulations well. Besides,the target PLR requirement is satisfied,and the distributed massive MIMO systems offer an obvious performance gain over the co-located massive MIMO systems.展开更多
A novel incremental nonlinear detection algorithm is presented for Multiple-Input Multiple-Output (MIMO) system. In this algorithm, the received data at multiple receiver antennas are nonlinearly mapped and then sum...A novel incremental nonlinear detection algorithm is presented for Multiple-Input Multiple-Output (MIMO) system. In this algorithm, the received data at multiple receiver antennas are nonlinearly mapped and then summed with weights. The weight coefficients are incrementally computed to avoid direct computation of the inverse of a matrix, which greatly reduce the computational complexity. Simulation and comparison show that the proposed algorithm can obtain better performance of Bit Error Rate (BER) than linear Minimum Mean Square Error (MMSE).展开更多
This paper addresses the problem of channel estimation in a multiuser multi-cell wireless communications system in which the base station(BS)is equipped with a very large number of antennas(also referred to as"ma...This paper addresses the problem of channel estimation in a multiuser multi-cell wireless communications system in which the base station(BS)is equipped with a very large number of antennas(also referred to as"massive multiple-input multiple-output(MIMO)").We consider a time-division duplexing(TDD)scheme,in which reciprocity between the uplink and downlink channels can be assumed.Channel estimation is essential for downlink beamforming in massive MIMO,nevertheless,the pilot contamination effect hinders accurate channel estimation,which leads to overall performance degradation.Benefitted from the asymptotic orthogonality between signal and interference subspaces for non-overlapping angle-of arrivals(AOAs)in the large-scale antenna system,we propose a multiple signals classification(MUSIC)based channel estimation algorithm during the uplink transmission.Analytical and numerical results verify complete pilot decontamination and the effectiveness of the proposed channel estimation algorithm in the multiuser multi-cell massive MIMO system.展开更多
Holographic multiple-input multiple-output(HMIMO)has become an emerging technology for achieving ultra-high frequency spectral efficiency and spatial resolution in future wireless systems.The increasing antenna apertu...Holographic multiple-input multiple-output(HMIMO)has become an emerging technology for achieving ultra-high frequency spectral efficiency and spatial resolution in future wireless systems.The increasing antenna aperture leads to a more significant characterization of the spherical wavefront in near-field communications in HMIMO scenarios.Beam training as a key technique for wireless communication is worth exploring in this near-field scenario.Compared with the widely researched far-field beam training,the increased dimensionality of the search space for near-field beam training poses a challenge to the complexity and accuracy of the proposed algorithm.In this paper,we introduce several typical near-field beam training methods:exhaustive beam training,hierarchical beam training,and multi-beam training that includes equal interval multi-beam training and hash multi-beam training.The performances of these methods are compared through simulation analysis,and their effectiveness is verified on the hardware testbed as well.Additionally,we provide application scenarios,research challenges,and potential future research directions for near-field beam training.展开更多
基金supported by the National Key Laboratory of Wireless Communications Foundation,China (IFN20230204)。
文摘This paper investigates the fundamental data detection problem with burst interference in massive multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM) systems. In particular, burst interference may occur only on data symbols but not on pilot symbols, which means that interference information cannot be premeasured. To cancel the burst interference, we first revisit the uplink multi-user system and develop a matrixform system model, where the covariance pattern and the low-rank property of the interference matrix is discussed. Then, we propose a turbo message passing based burst interference cancellation(TMP-BIC) algorithm to solve the data detection problem, where the constellation information of target data is fully exploited to refine its estimate. Furthermore, in the TMP-BIC algorithm, we design one module to cope with the interference matrix by exploiting its lowrank property. Numerical results demonstrate that the proposed algorithm can effectively mitigate the adverse effects of burst interference and approach the interference-free bound.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61331007,61361166008,and 61401065)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120185130001)
文摘Utilizing channel reciprocity, time reversal(TR) technique increases the signal-to-noise ratio(SNR) at the receiver with very low transmitter complexity in complex multipath environment. Present research works about TR multiple-input multiple-output(MIMO) communication all focus on the system implementation and network building. The aim of this work is to analyze the influence of antenna coupling on the capacity of wideband TR MIMO system, which is a realistic question in designing a practical communication system. It turns out that antenna coupling stabilizes the capacity in a small variation range with statistical wideband channel response. Meanwhile, antenna coupling only causes a slight detriment to the channel capacity in a wideband TR MIMO system. Comparatively, uncorrelated stochastic channels without coupling exhibit a wider range of random capacity distribution which greatly depends on the statistical channel. The conclusions drawn from information difference entropy theory provide a guideline for designing better high-performance wideband TR MIMO communication systems.
基金supported by NSFC (No. 61571055)fund of SKL of MMW (No. K201815)Important National Science & Technology Specific Projects (2017ZX03001028)
文摘Hybrid precoding and combining have been considered as a promising technology, which can provide a compromise between hardware complexity and system performance in millimeter wave multiple-input multiple-output systems. However, most existing hybrid precoder and combiner designs generally assume that infinite resolution phase shifters(PSs) are used to produce the analog beamformers. In a practical scene, the design with accurate PSs can lead to high hardware cost and power consumption. In this paper, we investigate the hybrid precoder and combiner design with finite resolution PSs in millimeter wave systems. We employ alternate optimization as the main strategy to jointly design analog precoder and combiner. In addition, we propose a low complexity algorithm, where the analog beamformers are implemented only by finite resolution PSs to maximize spectral efficiency. Then, the digital precoder and combiner are designed based on the obtained analog beamformers to improve the spectral efficiency. Finally, simulation results and mathematical analysis show that the proposed algorithm with low-resolution PSs can achieve near-optimal performance and have low complexity.
基金supported by the National Natural Science Foundation of China(Grant Nos.61071163,61271327,and 61471191)the Funding for Outstanding Doctoral Dissertation in Nanjing University of Aeronautics and Astronautics,China(Grant No.BCXJ14-08)+2 种基金the Funding of Innovation Program for Graduate Education of Jiangsu Province,China(Grant No.KYLX 0277)the Fundamental Research Funds for the Central Universities,China(Grant No.3082015NP2015504)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PADA),China
文摘This paper addresses the direction of arrival (DOA) estimation problem for the co-located multiple-input multiple- output (MIMO) radar with random arrays. The spatially distributed sparsity of the targets in the background makes com- pressive sensing (CS) desirable for DOA estimation. A spatial CS framework is presented, which links the DOA estimation problem to support recovery from a known over-complete dictionary. A modified statistical model is developed to ac- curately represent the intra-block correlation of the received signal. A structural sparsity Bayesian learning algorithm is proposed for the sparse recovery problem. The proposed algorithm, which exploits intra-signal correlation, is capable being applied to limited data support and low signal-to-noise ratio (SNR) scene. Furthermore, the proposed algorithm has less computation load compared to the classical Bayesian algorithm. Simulation results show that the proposed algorithm has a more accurate DOA estimation than the traditional multiple signal classification (MUSIC) algorithm and other CS recovery algorithms.
基金supported by the key project of the National Natural Science Foundation of China (No. 61431001)Huawei Innovation Research Program, the 5G research program of China Mobile Research Institute (Grant No. [2015] 0615)+2 种基金the open research fund of National Mobile Communications Research Laboratory Southeast University (No.2017D02)Key Laboratory of Cognitive Radio and Information Processing, Ministry of Education (Guilin University of Electronic Technology)the Foundation of Beijing Engineering and Technology Center for Convergence Networks and Ubiquitous Services, and Keysight
文摘Massive multiple-input multiple-output(MIMO) system is capable of substantially improving the spectral efficiency as well as the capacity of wireless networks relying on equipping a large number of antenna elements at the base stations. However, the excessively high computational complexity of the signal detection in massive MIMO systems imposes a significant challenge for practical hardware implementations. In this paper, we propose a novel minimum mean square error(MMSE) signal detection using the accelerated overrelaxation(AOR) iterative method without complicated matrix inversion, which is capable of reducing the overall complexity of the classical MMSE algorithm by an order of magnitude. Simulation results show that the proposed AOR-based method can approach the conventional MMSE signal detection with significant complexity reduction.
基金This paper was supported by the National Natural Science Foundation of China under Grant No.61390513 and 61201225,and National Science and Technology Major Project of China under Grant No.2013ZX03003004,the Natural Science Foundation of Shanghai under Grant No.12ZR1450800,and sponsored by Shanghai Pujiang Program under Grant No.13PJD030.It was also supported by the Fundamental Research Funds for the Central Universities under Grant No.20140767,the Program for Young Excellent Talents in Tongji University under Grant No.2013KJ007,and 'Chen Guang' project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation under Grant No.13CG18
文摘In Multiple-Input Multiple-Out (MIMO) systems, the user selection algorithm plays an important role in the realization of multiplexing gain. In this paper, an improved Semi-orthogonal User Selection algorithm based on condition number is proposed. Besides, a new MIMO pre- coding scheme is designed. The proposed SUS- CN (SUS with condition number) algorithm outperforms the SUS algorithm for the selection of users with better matrix inversion property, thus a higher information rate for selected user pair is achieved. The designed MIMO precoding matrix brings benefits of the power equality at transmitted terminals, the limited dynamic range of the power over time, and a better power efficiency. The simulation results give the key insights into the im- pact of the different condition number value and users on the sum-rate capacity.
文摘In this paper, a new observation equation of non-Gaussian frequency selective fading Bell Labs layered space time (BLAST) architecture system is proposed, which is used for frequency selective fading channels and non-Gaussian noise in an application environment of BLAST system. With othogonal matrix triangularization (QR decomposition) of the channel matrix, the static observation equation of frequency selective fading BLAST system is transformed into a dynamic state space model, and then the particle filter is used for space-time layered detection. Making the full use of the finite alphabet of the digital modulation communication signal, the optimal proposal distribution can be chosen to produce particle and update the weight. Incorporated with current method of reducing error propagation, a new space-time layered detection algorithm is proposed. Simulation result shows the validity of the proposed algorithm.
基金supported by the National Nature Science Foundation of China (No.61471153)the Scientific and Technological Support Project (Industry) of Jiangsu Province (No. BE2011195)the Major Program of the Natural Science Foundation of Institution of Higher Education of Jiangsu Province (No. 14KJA510001)
文摘In this paper, a generalized three-dimensional(3D) scattering channel model for macrocellular land mobile environments is considered. This model simultaneously describes angular arrival of multi-path signals in the azimuth and elevation planes in an environment where uniformly distributed scatterers are assumed to be present in hemispheroids around the base station(BS) and mobile station(MS). Using this channel model, we first derive the closed-form expression for the joint and marginal probability density functions of the angle-of-arrival and time-of-arrival measured at the BS and the MS corresponding to the azimuth and elevation angles. Next, we derive an expression for the Doppler spectral distribution caused by motion of the MSs. Furthermore, we analyze the performance of multiple-input multiple-output antenna systems numerically. The results show that the proposed 3D scattering channel model performs better than previously proposed two-dimensional(2D) models for indoor and outdoor environments. We compare the results with previous scattering channel models and measurement results to validate the generalizability of our model.
基金supported by Sichuan Youth Science and Technology Innovation Research Team Project(No.2015TD0022)the Talents Project of Sichuan University of Science and Engineering(No.2017RCL11 and No.2017RCL10)the first batch of science and technology plan key R&D project of Sichuan province(No.2017GZ0068)
文摘To improve the deteriorated capacity gain and source recovery performance due to channel mismatch problem,this paper reports a research about blind separation method against channel mismatch in multiple-input multiple-output(MIMO) systems.The channel mismatch problem can be described as a channel with bounded fluctuant errors due to channel distortion or channel estimation errors.The problem of blind signal separation/extraction with channel mismatch is formulated as a cost function of blind source separation(BSS) subject to the second-order cone constraint,which can be called as second-order cone programing optimization problem.Then the resulting cost function is solved by approximate negentropy maximization using quasi-Newton iterative methods for blind separation/extraction source signals.Theoretical analysis demonstrates that the proposed algorithm has low computational complexity and improved performance advantages.Simulation results verify that the capacity gain and bit error rate(BER) performance of the proposed blind separation method is superior to those of the existing methods in MIMO systems with channel mismatch problem.
基金supported by ZTE Industry-Academia-Research Cooperation Funds under Grant No.Surrey-Ref-9953
文摘Filter-bank multicarrier (FBMC) with offset quadrature amplitude modulation (OQAM) is a candidate waveform for future wireless communications due to its advantages over orthogonal frequency division multiplexing (OFDM) systems. However, because of or-thogonality in real field and the presence of imaginary intrinsic interference, channel estimation in FBMC is not as straightforward as OFDM systems especially in multiple antenna scenarios. In this paper, we propose a channel estimation method which employs intrinsic interference cancellation at the transmitter side. The simulation results show that this method has less pilot overhead, less peak to average power ratio (PAPR), better bit error rate (BER), and better mean square error (MSE) performance compared to the well-known intrinsic approximation methods (IAM).
基金Supported by the National Natural Science Foundation of China(61077022)
文摘A sparse channel estimation method is proposed for doubly selective channels in multiple- input multiple-output ( MIMO ) orthogonal frequency division multiplexing ( OFDM ) systems. Based on the basis expansion model (BEM) of the channel, the joint-sparsity of MIMO-OFDM channels is described. The sparse characteristics enable us to cast the channel estimation as a distributed compressed sensing (DCS) problem. Then, a low complexity DCS-based estimation scheme is designed. Compared with the conventional compressed channel estimators based on the compressed sensing (CS) theory, the DCS-based method has an improved efficiency because it reconstructs the MIMO channels jointly rather than addresses them separately. Furthermore, the group-sparse structure of each single channel is also depicted. To effectively use this additional structure of the sparsity pattern, the DCS algorithm is modified. The modified algorithm can further enhance the estimation performance. Simulation results demonstrate the superiority of our method over fast fading channels in MIMO-OFDM systems.
基金Supported by Beijing Natural Science Foundation(4194087)。
文摘Pilot contamination can bring up a grave impairment in the performance of massive multiple-input multiple-output(MIMO)systems.In this paper,an improved time-shifted pilot scheme is proposed to reduce the pilot contamination,where orthogonal pilots are employed in the same group to eliminate the residual intragroup interference existing in the original time-shifted pilot scheme.Meanwhile,the rigorous closed-form expressions of both downlink and uplink transmission rates with a finite number of antennas are derived,and it is shown that the intra-group interference can be completely eliminated by the proposed scheme.Simulation results demonstrate that both downlink and uplink transmission rates are significantly improved by employing the proposed scheme.
基金supported by Jiangsu Province Key Research and Development Program(BE2018704)Technical Innovation Project of The Ministry of Public Security(20170001)+1 种基金Fundamental Research Funds for the Central Universities(2242022k30001)National Science Foundation of China(CN)(Grant No.61871111).
文摘Location-based services have become an important part of the daily life.Fingerprint localization has been put forward to overcome the shortcomings of the traditional positioning algorithms in indoor scenario and rich scattering environment.In this paper,a single-site multiple-input multiple-output(MIMO)orthogonal frequency division multiplexing(OFDM)system is modeled,from which an angle delay channel power matrix(ADCPM)is extracted.Considering the changing environment,auto encoders are used to generate new fingerprints based on ADCPM fingerprints to improve the robustness of the fingerprints.When the scattering environment has changed beyond a certain extent,the robustness will not be able to make up for the positioning error.Under this circumstance,an updating of the fingerprint database is imperative.A new fingerprint database updating algorithm which combines a new clustering method and an updating rule based on probability is proposed.Simulation results show the desirable performance of the proposed methods.
文摘The high reliability of the communication system is critical in metro and mining applications for personal safety,channel optimization,and improving operational performance.This paper surveys the progress of wireless communication systems in underground environments such as tunnels and mines from 1920 to 2022,including the evolution of primitive technology,advancements in channel modelling,and realization of various wireless propagation channels.In addition,the existing and advanced channel modeling strategies,which include the evolution of different technologies and their applications;mathematical,analytical,and experimental techniques for radio propagation;and significance of the radiation characteristics,antenna placement,and physical environment of multiple-input multiple-output(MIMO)communication systems,are analyzed.The given study introduces leaky coaxial cable(LCX)and distributed antenna system(DAS)designs for improving narrowband and wideband channel capacity.The paper concludes by figuring out open research areas for the future technologies.
基金This work was supported by the China National Key Research and Development Plan(No.2020YFB1807204).
文摘Recently,cell-free(CF)massive multipleinput multiple-output(MIMO)becomes a promising architecture for the next generation wireless communication system,where a large number of distributed access points(APs)are deployed to simultaneously serve multiple user equipments(UEs)for improved performance.Meanwhile,a clustered CF system is considered to tackle the backhaul overhead issue in the huge connection network.In this paper,taking into account the more realistic mobility scenarios,we propose a hybrid small-cell(SC)and clustered CF massive MIMO system through classifications of the UEs and APs,and constructing the corresponding pairs to run in SC or CF mode.A joint initial AP selection of this paradigm for all the UEs is firstly proposed,which is based on the statistics of estimated channel.Then,closed-form expressions of the downlink achievable rates for both the static and moving UEs are provided under Ricean fading channel and Doppler shift effect.We also develop a semi-heuristic search algorithm to deal with the AP selection for the moving UEs by maximizing the weight average achievable rate.Numerical results demonstrate the performance gains and effective rates balancing of the proposed system.
基金supported by the Fundamental Research Funds for the Central Universitiesthe National Natural Science Foundation of China under Grant 62071191
文摘Codebooks have been indispensable for wireless communication standard since the first release of the Long-Term Evolution in 2009.They offer an efficient way to acquire the channel state information(CSI)for multiple antenna systems.Nowadays,a codebook is not limited to a set of pre-defined precoders,it refers to a CSI feedback framework,which is more and more sophisticated.In this paper,we review the codebooks in 5G New Radio(NR)standards.The codebook timeline and the evolution trend are shown.Each codebook is elaborated with its motivation,the corresponding feedback mechanism,and the format of the precoding matrix indicator.Some insights are given to help grasp the underlying reasons and intuitions of these codebooks.Finally,we point out some unresolved challenges of the codebooks for future evolution of the standards.In general,this paper provides a comprehensive review of the codebooks in 5G NR and aims to help researchers understand the CSI feedback schemes from a standard and industrial perspective.
基金supported in part by the National Natural Science Foundation of China (No. 61971220)the Fundamental Research Funds for the Central Universities of Nanjing University of Aeronautics and Astronautics(NUAA)(No.kfjj20200414)Natural Science Foundation of Jiangsu Province in China (No. BK20181289)。
文摘The performance of uplink distributed massive multiple-input multiple-output(MIMO)systems with crosslayer design(CLD) is investigated over Rayleigh fading channel, which combines the discrete rate adaptive modulation with truncated automatic repeat request. By means of the performance analysis, the closed-form expressions of average packet error rate(APER)and overall average spectral efficiency(ASE)of distributed massive MIMO systems with CLD are derived based on the conditional probability density function of each user’s approximate effective signal-to-noise ratio(SNR)and the switching thresholds under the target packet loss rate(PLR)constraint.With these results,using the approximation of complementary error functions,the approximate APER and overall ASE are also deduced. Simulation results illustrate that the obtained theoretical ASE and APER can match the corresponding simulations well. Besides,the target PLR requirement is satisfied,and the distributed massive MIMO systems offer an obvious performance gain over the co-located massive MIMO systems.
文摘A novel incremental nonlinear detection algorithm is presented for Multiple-Input Multiple-Output (MIMO) system. In this algorithm, the received data at multiple receiver antennas are nonlinearly mapped and then summed with weights. The weight coefficients are incrementally computed to avoid direct computation of the inverse of a matrix, which greatly reduce the computational complexity. Simulation and comparison show that the proposed algorithm can obtain better performance of Bit Error Rate (BER) than linear Minimum Mean Square Error (MMSE).
文摘This paper addresses the problem of channel estimation in a multiuser multi-cell wireless communications system in which the base station(BS)is equipped with a very large number of antennas(also referred to as"massive multiple-input multiple-output(MIMO)").We consider a time-division duplexing(TDD)scheme,in which reciprocity between the uplink and downlink channels can be assumed.Channel estimation is essential for downlink beamforming in massive MIMO,nevertheless,the pilot contamination effect hinders accurate channel estimation,which leads to overall performance degradation.Benefitted from the asymptotic orthogonality between signal and interference subspaces for non-overlapping angle-of arrivals(AOAs)in the large-scale antenna system,we propose a multiple signals classification(MUSIC)based channel estimation algorithm during the uplink transmission.Analytical and numerical results verify complete pilot decontamination and the effectiveness of the proposed channel estimation algorithm in the multiuser multi-cell massive MIMO system.
文摘Holographic multiple-input multiple-output(HMIMO)has become an emerging technology for achieving ultra-high frequency spectral efficiency and spatial resolution in future wireless systems.The increasing antenna aperture leads to a more significant characterization of the spherical wavefront in near-field communications in HMIMO scenarios.Beam training as a key technique for wireless communication is worth exploring in this near-field scenario.Compared with the widely researched far-field beam training,the increased dimensionality of the search space for near-field beam training poses a challenge to the complexity and accuracy of the proposed algorithm.In this paper,we introduce several typical near-field beam training methods:exhaustive beam training,hierarchical beam training,and multi-beam training that includes equal interval multi-beam training and hash multi-beam training.The performances of these methods are compared through simulation analysis,and their effectiveness is verified on the hardware testbed as well.Additionally,we provide application scenarios,research challenges,and potential future research directions for near-field beam training.