This paper discusses the problem of direction of departure (DOD) and direction of arrival (DOA) estimation for a bistatic multiple input multiple output (MIMO) radar, and proposes an improved reduced-dimension C...This paper discusses the problem of direction of departure (DOD) and direction of arrival (DOA) estimation for a bistatic multiple input multiple output (MIMO) radar, and proposes an improved reduced-dimension Capon algorithm therein. Compared with the reduced-dimension Capon algorithm which requires pair matching between the two-dimensional angle estimation, the pro- posed algorithm can obtain automatically paired DOD and DOA estimation without debasing the performance of angle estimation in bistatic MIMO radar. Furthermore, the proposed algorithm has a lower complexity than the reduced-dimension Capon algorithm, and it is suitable for non-uniform linear arrays. The complexity of the proposed algorithm is analyzed and the Cramer-Rao bound (CRB) is also derived. Simulation results verify the usefulness of the proposed algorithm.展开更多
This paper addresses the problem of four-dimensional angle and Doppler frequency estimation for bistatic multiple-input multiple-output (MIMO) radar with arbitrary arrays in spatial co- lored noise. A novel method f...This paper addresses the problem of four-dimensional angle and Doppler frequency estimation for bistatic multiple-input multiple-output (MIMO) radar with arbitrary arrays in spatial co- lored noise. A novel method for joint estimation of Doppler fre- quency, two-dimensional (2D) direction of departure and 2D direc- tion of arrival based on the propagator method (PM) for arbitrary arrays is discussed. A special matrix is constructed to eliminate the influence of spatial colored noise. The four-dimensional (4D) angle and Doppler frequency are extracted from the matrix and the three- dimensional (3D) coordinates of the targets are then calculated on the basis of these angles. The proposed algorithm provides a lower computational complexity and has a parameter estimation very close to that of the ESPRIT algorithm and the DOA-matrix al- gorithm in the high signal to noise ratio and the Cramer-Rao bound (CRB) is given. Furthermore, multi-dimensional parameters can be automatically paired by this algorithm to avoid performance degra- dation resulting from wrong pairing. Simulation results demonstrate the effectiveness of the proposed method.展开更多
In MIMO wireless communication systems, when more and more antennas are packed into spatiallylimited receive region, the antenna saturation phenomenon will appear. Moreover, the electromagnetic interactions among ante...In MIMO wireless communication systems, when more and more antennas are packed into spatiallylimited receive region, the antenna saturation phenomenon will appear. Moreover, the electromagnetic interactions among antennas will also become stronger and stronger and affect the antenna saturation effect considerably. Despite this, few studies consider these two effects jointly. The effects of antenna saturation are investigated under the consideration of mutual coupling, thus a more practical and physically meaningful result can be obtained.展开更多
This paper introduces an algorithm for beamforming systems by the aid of multidimensional harmonic retrieval(MHR).This algorithm resolves problems,removes limitations of sampling and provides a more robust beamformer....This paper introduces an algorithm for beamforming systems by the aid of multidimensional harmonic retrieval(MHR).This algorithm resolves problems,removes limitations of sampling and provides a more robust beamformer.A new sample space is created that can be used for estimating weights of a new beamforming called spatial-harmonics retrieval beamformer(SHRB).Simulation results show that SHRB has a better performance,accuracy,and applicability and more powerful eigenvalues than conventional beamformers.A simple mathematical proof is provided.By changing the number of harmonics,as a degree of freedom that is missing in conventional beamformers,SHRB can achieve more optimal outputs without increasing the number of spatial or temporal samples.We will demonstrate that SHRB offers an improvement of 4 dB in signal to noise ratio(SNR) in bit error rate(BER) of 10~(-4) over conventional beamformers.In the case of direction of arrival(DOA) estimation,SHRB can estimate the DOA of the desired signal with an SNR of-25 dB,when conventional methods cannot have acceptable response.展开更多
基金supported by the National Natural Science Foundation of China(6080105261271327)+2 种基金Jiangsu Planned Projects for Postdoctoral Research Funds(1201039C)the China Postdoctoral Science Foundation (2012M521099)Hubei Key Laboratory of Intelligent Wireless Communications(IWC2012002)
文摘This paper discusses the problem of direction of departure (DOD) and direction of arrival (DOA) estimation for a bistatic multiple input multiple output (MIMO) radar, and proposes an improved reduced-dimension Capon algorithm therein. Compared with the reduced-dimension Capon algorithm which requires pair matching between the two-dimensional angle estimation, the pro- posed algorithm can obtain automatically paired DOD and DOA estimation without debasing the performance of angle estimation in bistatic MIMO radar. Furthermore, the proposed algorithm has a lower complexity than the reduced-dimension Capon algorithm, and it is suitable for non-uniform linear arrays. The complexity of the proposed algorithm is analyzed and the Cramer-Rao bound (CRB) is also derived. Simulation results verify the usefulness of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(6137116961179006)+1 种基金the Jiangsu Postdoctoral Research Funding Plan(1301013B)the Nanjing University of Aeronautics and Astronautics Funding(NZ2013208)
文摘This paper addresses the problem of four-dimensional angle and Doppler frequency estimation for bistatic multiple-input multiple-output (MIMO) radar with arbitrary arrays in spatial co- lored noise. A novel method for joint estimation of Doppler fre- quency, two-dimensional (2D) direction of departure and 2D direc- tion of arrival based on the propagator method (PM) for arbitrary arrays is discussed. A special matrix is constructed to eliminate the influence of spatial colored noise. The four-dimensional (4D) angle and Doppler frequency are extracted from the matrix and the three- dimensional (3D) coordinates of the targets are then calculated on the basis of these angles. The proposed algorithm provides a lower computational complexity and has a parameter estimation very close to that of the ESPRIT algorithm and the DOA-matrix al- gorithm in the high signal to noise ratio and the Cramer-Rao bound (CRB) is given. Furthermore, multi-dimensional parameters can be automatically paired by this algorithm to avoid performance degra- dation resulting from wrong pairing. Simulation results demonstrate the effectiveness of the proposed method.
基金the National High Technology Research and Development Program of China (2002AA123032).
文摘In MIMO wireless communication systems, when more and more antennas are packed into spatiallylimited receive region, the antenna saturation phenomenon will appear. Moreover, the electromagnetic interactions among antennas will also become stronger and stronger and affect the antenna saturation effect considerably. Despite this, few studies consider these two effects jointly. The effects of antenna saturation are investigated under the consideration of mutual coupling, thus a more practical and physically meaningful result can be obtained.
文摘This paper introduces an algorithm for beamforming systems by the aid of multidimensional harmonic retrieval(MHR).This algorithm resolves problems,removes limitations of sampling and provides a more robust beamformer.A new sample space is created that can be used for estimating weights of a new beamforming called spatial-harmonics retrieval beamformer(SHRB).Simulation results show that SHRB has a better performance,accuracy,and applicability and more powerful eigenvalues than conventional beamformers.A simple mathematical proof is provided.By changing the number of harmonics,as a degree of freedom that is missing in conventional beamformers,SHRB can achieve more optimal outputs without increasing the number of spatial or temporal samples.We will demonstrate that SHRB offers an improvement of 4 dB in signal to noise ratio(SNR) in bit error rate(BER) of 10~(-4) over conventional beamformers.In the case of direction of arrival(DOA) estimation,SHRB can estimate the DOA of the desired signal with an SNR of-25 dB,when conventional methods cannot have acceptable response.