The multi-compartment electric vehicle routing problem(EVRP)with soft time window and multiple charging types(MCEVRP-STW&MCT)is studied,in which electric multi-compartment vehicles that are environmentally friendl...The multi-compartment electric vehicle routing problem(EVRP)with soft time window and multiple charging types(MCEVRP-STW&MCT)is studied,in which electric multi-compartment vehicles that are environmentally friendly but need to be recharged in course of transport process,are employed.A mathematical model for this optimization problem is established with the objective of minimizing the function composed of vehicle cost,distribution cost,time window penalty cost and charging service cost.To solve the problem,an estimation of the distribution algorithm based on Lévy flight(EDA-LF)is proposed to perform a local search at each iteration to prevent the algorithm from falling into local optimum.Experimental results demonstrate that the EDA-LF algorithm can find better solutions and has stronger robustness than the basic EDA algorithm.In addition,when comparing with existing algorithms,the result shows that the EDA-LF can often get better solutions in a relatively short time when solving medium and large-scale instances.Further experiments show that using electric multi-compartment vehicles to deliver incompatible products can produce better results than using traditional fuel vehicles.展开更多
针对带时间窗的低能耗多车场多车型车辆路径问题(Low-energy-consumption multi-depots heterogeneousfleet vehicle routing problem with time windows,LMHFVPR_TW),提出一种结合聚类分解策略的增强蚁群算法(Enhanced ant colony opti...针对带时间窗的低能耗多车场多车型车辆路径问题(Low-energy-consumption multi-depots heterogeneousfleet vehicle routing problem with time windows,LMHFVPR_TW),提出一种结合聚类分解策略的增强蚁群算法(Enhanced ant colony optimization based on clustering decomposition,EACO_CD)进行求解.首先,由于该问题具有强约束、大规模和NP-Hard等复杂性,为有效控制问题的求解规模并合理引导算法在优质解区域搜索,根据问题特点设计两种基于K-means的聚类策略,将LMHFVPR_TW合理分解为一系列带时间窗的低能耗单车场单车型车辆路径子问题(Low-energy-consumption vehicle routing problem with time windows,LVRP_TW);其次,本文提出一种增强蚁群算法(Enhanced ant colony optimization,EACO)求解分解后的各子问题(LVRP_TW),进而获得原问题的解.EACO不仅引入信息素挥发系数控制因子进一步动态调节信息素挥发系数,从而有效控制信息素的挥发以提高算法的全局搜索能力,而且设计基于4种变邻域操作的两阶段变邻域局部搜索(Two-stage variable neighborhood search,TVNS)来增强算法的局部搜索能力.最后,在不同规模问题上的仿真和对比实验验证了所提EACO_CD的有效性.展开更多
基金supported by the National Natural Science Foundation of China(71571076)the National Key R&D Program for the 13th-Five-Year-Plan of China(2018YFF0300301).
文摘The multi-compartment electric vehicle routing problem(EVRP)with soft time window and multiple charging types(MCEVRP-STW&MCT)is studied,in which electric multi-compartment vehicles that are environmentally friendly but need to be recharged in course of transport process,are employed.A mathematical model for this optimization problem is established with the objective of minimizing the function composed of vehicle cost,distribution cost,time window penalty cost and charging service cost.To solve the problem,an estimation of the distribution algorithm based on Lévy flight(EDA-LF)is proposed to perform a local search at each iteration to prevent the algorithm from falling into local optimum.Experimental results demonstrate that the EDA-LF algorithm can find better solutions and has stronger robustness than the basic EDA algorithm.In addition,when comparing with existing algorithms,the result shows that the EDA-LF can often get better solutions in a relatively short time when solving medium and large-scale instances.Further experiments show that using electric multi-compartment vehicles to deliver incompatible products can produce better results than using traditional fuel vehicles.
文摘针对带时间窗的低能耗多车场多车型车辆路径问题(Low-energy-consumption multi-depots heterogeneousfleet vehicle routing problem with time windows,LMHFVPR_TW),提出一种结合聚类分解策略的增强蚁群算法(Enhanced ant colony optimization based on clustering decomposition,EACO_CD)进行求解.首先,由于该问题具有强约束、大规模和NP-Hard等复杂性,为有效控制问题的求解规模并合理引导算法在优质解区域搜索,根据问题特点设计两种基于K-means的聚类策略,将LMHFVPR_TW合理分解为一系列带时间窗的低能耗单车场单车型车辆路径子问题(Low-energy-consumption vehicle routing problem with time windows,LVRP_TW);其次,本文提出一种增强蚁群算法(Enhanced ant colony optimization,EACO)求解分解后的各子问题(LVRP_TW),进而获得原问题的解.EACO不仅引入信息素挥发系数控制因子进一步动态调节信息素挥发系数,从而有效控制信息素的挥发以提高算法的全局搜索能力,而且设计基于4种变邻域操作的两阶段变邻域局部搜索(Two-stage variable neighborhood search,TVNS)来增强算法的局部搜索能力.最后,在不同规模问题上的仿真和对比实验验证了所提EACO_CD的有效性.