期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Numerical investigation of a muzzle multiphase flow field using two underwater launch methods
1
作者 Jing-hui Zhang Yong-gang Yu Xin-wei Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第8期1454-1469,共16页
A two-dimensional axisymmetric model, employing a dynamic mesh and user-defined functions, is used to numerically simulate the transient multiphase flow field produced by an underwater gun. Furthermore, a visualized s... A two-dimensional axisymmetric model, employing a dynamic mesh and user-defined functions, is used to numerically simulate the transient multiphase flow field produced by an underwater gun. Furthermore, a visualized shooting experiment platform with a high-speed camera is built to observe the evolution process of such a multiphase flow field. The simulated phase distribution diagram is agreed well with the shadow photo of the experiment, indicating that the numerical model is reasonable. Further examinations of the multiphase flow fields by using the submerged and sealed launch methods show that use of the sealed launch can significantly improve the interior ballistic performance of an underwater gun. In the cases by using these two types of underwater launch methods, the displacement of the projectile within the range of the muzzle flow field meets the exponential law over time. Moreover, a not fully developed bottle-shaped shock wave is formed when t = 0.4 ms, but this bottle-shaped shock wave expands more rapidly for the sealed launch. In addition, the amplitude of pressure oscillation for the sealed launch is larger than that of the submerged launch, but the pressure oscillation of the sealed launch lasts shorter. 展开更多
关键词 Underwater launch multiphase flow Muzzle flow field Numerical simulation Mach disk
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部