期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
AI-driven Fourier Ptychography and Its Insight for“AI+Optics”(Invited)
1
作者 PAN An WANG Aiye +4 位作者 FENG Tianci GAO Huiqin WANG Siyuan XU Jinghao LI Xuan 《光子学报》 北大核心 2025年第9期146-170,共25页
Fourier Ptychographic Microscopy(FPM)is a high-throughput computational optical imaging technology reported in 2013.It effectively breaks through the trade-off between high-resolution imaging and wide-field imaging.In... Fourier Ptychographic Microscopy(FPM)is a high-throughput computational optical imaging technology reported in 2013.It effectively breaks through the trade-off between high-resolution imaging and wide-field imaging.In recent years,it has been found that FPM is not only a tool to break through the trade-off between field of view and spatial resolution,but also a paradigm to break through those trade-off problems,thus attracting extensive attention.Compared with previous reviews,this review does not introduce its concept,basic principles,optical system and series of applications once again,but focuses on elaborating the three major difficulties faced by FPM technology in the process from“looking good”in the laboratory to“working well”in practical applications:mismatch between numerical model and physical reality,long reconstruction time and high computing power demand,and lack of multi-modal expansion.It introduces how to achieve key technological innovations in FPM through the dual drive of Artificial Intelligence(AI)and physics,including intelligent reconstruction algorithms introducing machine learning concepts,optical-algorithm co-design,fusion of frequency domain extrapolation methods and generative adversarial networks,multi-modal imaging schemes and data fusion enhancement,etc.,gradually solving the difficulties of FPM technology.Conversely,this review deeply considers the unique value of FPM technology in potentially feeding back to the development of“AI+optics”,such as providing AI benchmark tests under physical constraints,inspirations for the balance of computing power and bandwidth in miniaturized intelligent microscopes,and photoelectric hybrid architectures.Finally,it introduces the industrialization path and frontier directions of FPM technology,pointing out that with the promotion of the dual drive of AI and physics,it will generate a large number of industrial application case,and looks forward to the possibilities of future application scenarios and expansions,for instance,body fluid biopsy and point-of-care testing at the grassroots level represent the expansion of the growth market. 展开更多
关键词 Computational optical imaging Fourier ptychography Artificial Intelligence Highthroughput imaging Multimodal imaging
在线阅读 下载PDF
A deep multimodal fusion and multitasking trajectory prediction model for typhoon trajectory prediction to reduce flight scheduling cancellation
2
作者 TANG Jun QIN Wanting +1 位作者 PAN Qingtao LAO Songyang 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期666-678,共13页
Natural events have had a significant impact on overall flight activity,and the aviation industry plays a vital role in helping society cope with the impact of these events.As one of the most impactful weather typhoon... Natural events have had a significant impact on overall flight activity,and the aviation industry plays a vital role in helping society cope with the impact of these events.As one of the most impactful weather typhoon seasons appears and continues,airlines operating in threatened areas and passengers having travel plans during this time period will pay close attention to the development of tropical storms.This paper proposes a deep multimodal fusion and multitasking trajectory prediction model that can improve the reliability of typhoon trajectory prediction and reduce the quantity of flight scheduling cancellation.The deep multimodal fusion module is formed by deep fusion of the feature output by multiple submodal fusion modules,and the multitask generation module uses longitude and latitude as two related tasks for simultaneous prediction.With more dependable data accuracy,problems can be analysed rapidly and more efficiently,enabling better decision-making with a proactive versus reactive posture.When multiple modalities coexist,features can be extracted from them simultaneously to supplement each other’s information.An actual case study,the typhoon Lichma that swept China in 2019,has demonstrated that the algorithm can effectively reduce the number of unnecessary flight cancellations compared to existing flight scheduling and assist the new generation of flight scheduling systems under extreme weather. 展开更多
关键词 flight scheduling optimization deep multimodal fusion multitasking trajectory prediction typhoon weather flight cancellation prediction reliability
在线阅读 下载PDF
Fuzzy least brain storm optimization and entropy-based Euclidean distance for multimodal vein-based recognition system 被引量:1
3
作者 Dipti Verma Sipi Dubey 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第10期2360-2371,共12页
Nowadays, the vein based recognition system becomes an emerging and facilitating biometric technology in the recognition system. Vein recognition exploits the different modalities such as finger, palm and hand image f... Nowadays, the vein based recognition system becomes an emerging and facilitating biometric technology in the recognition system. Vein recognition exploits the different modalities such as finger, palm and hand image for the person identification. In this work, the fuzzy least brain storm optimization and Euclidean distance(EED) are proposed for the vein based recognition system. Initially, the input image is fed into the region of interest(ROI) extraction which obtains the appropriate image for the subsequent step. Then, features or vein pattern is extracted by the image enlightening, circular averaging filter and holoentropy based thresholding. After the features are obtained, the entropy based Euclidean distance is proposed to fuse the features by the score level fusion with the weight score value. Finally, the optimal matching score is computed iteratively by the newly developed fuzzy least brain storm optimization(FLBSO) algorithm. The novel algorithm is developed by the least mean square(LMS) algorithm and fuzzy brain storm optimization(FBSO). Thus, the experimental results are evaluated and the performance is compared with the existing systems using false acceptance rate(FAR), false rejection rate(FRR) and accuracy. The performance outcome of the proposed algorithm attains the higher accuracy of 89.9% which ensures the better recognition rate. 展开更多
关键词 multimodality BRAIN STORM OPTIMIZATION (BSO) least mean square (LMS) score level fusion recognition
在线阅读 下载PDF
Multi-population and diffusion UMDA for dynamic multimodal problems 被引量:3
4
作者 Yan Wu Yuping Wang +1 位作者 Xiaoxiong Liu Jimin Ye 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第5期777-783,共7页
In dynamic environments,it is important to track changing optimal solutions over time.Univariate marginal distribution algorithm(UMDA) which is a class algorithm of estimation of distribution algorithms attracts mor... In dynamic environments,it is important to track changing optimal solutions over time.Univariate marginal distribution algorithm(UMDA) which is a class algorithm of estimation of distribution algorithms attracts more and more attention in recent years.In this paper a new multi-population and diffusion UMDA(MDUMDA) is proposed for dynamic multimodal problems.The multi-population approach is used to locate multiple local optima which are useful to find the global optimal solution quickly to dynamic multimodal problems.The diffusion model is used to increase the diversity in a guided fashion,which makes the neighbor individuals of previous optimal solutions move gradually from the previous optimal solutions and enlarge the search space.This approach uses both the information of current population and the part history information of the optimal solutions.Finally experimental studies on the moving peaks benchmark are carried out to evaluate the proposed algorithm and compare the performance of MDUMDA and multi-population quantum swarm optimization(MQSO) from the literature.The experimental results show that the MDUMDA is effective for the function with moving optimum and can adapt to the dynamic environments rapidly. 展开更多
关键词 univariate marginal distribution algorithm(UMDA) dynamic multimodal problems dynamic optimization multipopulation scheme.
在线阅读 下载PDF
Rotation forest based on multimodal genetic algorithm 被引量:2
5
作者 XU Zhe NI Wei-chen JI Yue-hui 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第6期1747-1764,共18页
In machine learning,randomness is a crucial factor in the success of ensemble learning,and it can be injected into tree-based ensembles by rotating the feature space.However,it is a common practice to rotate the featu... In machine learning,randomness is a crucial factor in the success of ensemble learning,and it can be injected into tree-based ensembles by rotating the feature space.However,it is a common practice to rotate the feature space randomly.Thus,a large number of trees are required to ensure the performance of the ensemble model.This random rotation method is theoretically feasible,but it requires massive computing resources,potentially restricting its applications.A multimodal genetic algorithm based rotation forest(MGARF)algorithm is proposed in this paper to solve this problem.It is a tree-based ensemble learning algorithm for classification,taking advantage of the characteristic of trees to inject randomness by feature rotation.However,this algorithm attempts to select a subset of more diverse and accurate base learners using the multimodal optimization method.The classification accuracy of the proposed MGARF algorithm was evaluated by comparing it with the original random forest and random rotation ensemble methods on 23 UCI classification datasets.Experimental results show that the MGARF method outperforms the other methods,and the number of base learners in MGARF models is much fewer. 展开更多
关键词 ensemble learning decision tree multimodal optimization genetic algorithm
在线阅读 下载PDF
Multifeature Statistical TV Tracker
6
作者 Zhu Zhenfu(Beijing Institute of Environmental Features) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1990年第1期64-70,共7页
A multifeature statistical image segmentation algorithm is described. Multiple features such as grey, edge magnitude and correlation are combined to form a multidimensional space statistics. The statistical algorithm ... A multifeature statistical image segmentation algorithm is described. Multiple features such as grey, edge magnitude and correlation are combined to form a multidimensional space statistics. The statistical algorithm is used to segment an image using the decision curved surface determined by the multidimensional feature function. The segmentation problem which is difficult to solve using the features independently will be readily solved using the same features jointly. An adaptive segmentation algorithm is discussed. Test results of the real-time TV tracker newly developed have shown that the segmentation algorithm discussed here improves effectively the image segmentation quality and system tracking performance. 展开更多
关键词 Multifeature statistics Multifeature tracking Multimode tracking Adaptive image segmentation algorithm.
在线阅读 下载PDF
Basic Questions of Multimodal Discourse Analysis
7
作者 FENG Dezheng 《北京第二外国语学院学报》 2017年第3期132-141,共10页
As a new research field,multimodal discourse analysis is facing a lot of challenges.On the one hand,the status of multimodality in traditional linguistics is questioned.Many linguists argue that nonlinguistic signs su... As a new research field,multimodal discourse analysis is facing a lot of challenges.On the one hand,the status of multimodality in traditional linguistics is questioned.Many linguists argue that nonlinguistic signs such as gestures and visual images are out of the scope of linguistics.On the other hand,the theories and methods of multimodal discourse analysis are still at an early stage of development and have many limitations.Moreover,many researchers have misunderstandings of the field.In view of these,this article provides a brief explanation of the basic questions of multimodal discourse analysis,including why we analyze multimodal discourse,whether linguistic theories are applicable to nonlinguistic signs such as visual images and gesture,what is the scope of multimodal research,what are the main theories and methods,and what are the limitations and misunderstandings.It further points out that researchers need to have the awareness of making their research interdisciplinary,empirical,and application-oriented.It argues that multimodal research should be based on theoretical and methodological innovation,and should aim at solving real communication problems in the multimedia age.The accurate understanding of these questions is crucial for developing multimodal discourse analysis into a new discipline with strong theoretical and methodological support. 展开更多
关键词 multimodal discourse analysis basic questions theoretical perspectives research methods
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部