本文以30Cr Mn Si A结构钢为研究对象,利用低温等离子体渗氮及低温渗氮-低温氧化复合技术对其进行表面改性研究,重点研究了氧化时间对渗氮30Cr Mn Si A钢表面组织结构和性能的影响。采用扫描电子显微镜、X射线衍射仪分析渗氮层及渗氮-...本文以30Cr Mn Si A结构钢为研究对象,利用低温等离子体渗氮及低温渗氮-低温氧化复合技术对其进行表面改性研究,重点研究了氧化时间对渗氮30Cr Mn Si A钢表面组织结构和性能的影响。采用扫描电子显微镜、X射线衍射仪分析渗氮层及渗氮-氧化复合改性层的表面形貌、截面组织和相结构;利用维氏硬度计、摩擦磨损试验机和电化学工作站对渗氮层及复合改性层的硬度、耐磨性和耐蚀性进行评价。结果表明,渗氮层表面主要由ε-Fe_(23)N、γ'-Fe_(4)N和α_N相组成,经不同时间的氧化处理后,渗氮层表面生成Fe_(3)O_(4)相和Fe_(2)O_(3)相;随着氧化时间的延长,氧化物的含量增大,表面硬度增大,最大可达1012 HV_(0.05),改性层的有效硬化层厚度约为200μm;在防腐耐磨方面,渗氮层和渗氮-氧化复合改性层的耐磨性和耐蚀性均显著提高,且短时间氧化的复合改性层具有更好的耐磨性和耐蚀性。展开更多
Smart batteries play a key role in upgrading energy storage systems.However,they require a well-balanced integration of material structure,functional properties,and electrochemical performance,and their development is...Smart batteries play a key role in upgrading energy storage systems.However,they require a well-balanced integration of material structure,functional properties,and electrochemical performance,and their development is limited by conventional material systems in terms of energy density,response time,and functional integration.Carbon materials have emerged as a key solution for overcoming these problems due to their structural adjustability and multifunctional compatibility.Strategies for improving their electrochemical performance by changing the pore structure and interlayer spacing,as well as chemical functionalization,and composite design are analyzed,and their impact on improving the specific capacity and cycling stability of batteries is demonstrated.The unique advantages of carbon materials in realizing smart functions such as power supply,real-time monitoring and energy management in smart batteries are also discussed.Based on current progress in related fields,the prospects for the use of carbon materials in smart batteries are evaluated.展开更多
文摘本文以30Cr Mn Si A结构钢为研究对象,利用低温等离子体渗氮及低温渗氮-低温氧化复合技术对其进行表面改性研究,重点研究了氧化时间对渗氮30Cr Mn Si A钢表面组织结构和性能的影响。采用扫描电子显微镜、X射线衍射仪分析渗氮层及渗氮-氧化复合改性层的表面形貌、截面组织和相结构;利用维氏硬度计、摩擦磨损试验机和电化学工作站对渗氮层及复合改性层的硬度、耐磨性和耐蚀性进行评价。结果表明,渗氮层表面主要由ε-Fe_(23)N、γ'-Fe_(4)N和α_N相组成,经不同时间的氧化处理后,渗氮层表面生成Fe_(3)O_(4)相和Fe_(2)O_(3)相;随着氧化时间的延长,氧化物的含量增大,表面硬度增大,最大可达1012 HV_(0.05),改性层的有效硬化层厚度约为200μm;在防腐耐磨方面,渗氮层和渗氮-氧化复合改性层的耐磨性和耐蚀性均显著提高,且短时间氧化的复合改性层具有更好的耐磨性和耐蚀性。
文摘Smart batteries play a key role in upgrading energy storage systems.However,they require a well-balanced integration of material structure,functional properties,and electrochemical performance,and their development is limited by conventional material systems in terms of energy density,response time,and functional integration.Carbon materials have emerged as a key solution for overcoming these problems due to their structural adjustability and multifunctional compatibility.Strategies for improving their electrochemical performance by changing the pore structure and interlayer spacing,as well as chemical functionalization,and composite design are analyzed,and their impact on improving the specific capacity and cycling stability of batteries is demonstrated.The unique advantages of carbon materials in realizing smart functions such as power supply,real-time monitoring and energy management in smart batteries are also discussed.Based on current progress in related fields,the prospects for the use of carbon materials in smart batteries are evaluated.