The multicast routing problem with multiple QoS constraints in networks with uncertain parameters is discussed, and a network model that is suitable to research such QoS multicast routing problem is described. The QMR...The multicast routing problem with multiple QoS constraints in networks with uncertain parameters is discussed, and a network model that is suitable to research such QoS multicast routing problem is described. The QMRGA, a multicast routing policy for Internet, mobile network or other highperformance networks is mainly presented, which is based on the genetic algorithm(GA), and can provide QoSsensitive paths in a scalable and flexible way in the network environment with uncertain parameters. The QMRGA can also optimize the network resources such as bandwidth and delay, and can converge to the optimal or nearoptimal solution within few iterations, even for the network environment with uncertain parameters. The incremental rate of computational cost can be close to a polynomial and is less than exponential rate. The performance measures of the QMRGA are evaluated by using simulations. The results show that QMRGA provides an available approach to QoS multicast routing in network environment with uncertain parameters.展开更多
Device to device(D2 D) multi-hop communication in multicast networks solves the contradiction between high speed requirements and limited bandwidth in regional data sharing communication services. However, most networ...Device to device(D2 D) multi-hop communication in multicast networks solves the contradiction between high speed requirements and limited bandwidth in regional data sharing communication services. However, most networking models demand a large control overhead in eNodeB. Moreover, the topology should be calculated again due to the mobility of terminals, which causes the long delay. In this work, we model multicast network construction in D2 D communication through a fuzzy mathematics and game theory based algorithm. In resource allocation, we assume that user equipment(UE) can detect the available frequency and the fuzzy mathematics is introduced to describe an uncertain relationship between the resource and UE distributedly, which diminishes the time delay. For forming structure, a distributed myopic best response dynamics formation algorithm derived from a novel concept from the coalitional game theory is proposed, in which every UE can self-organize into stable structure without the control from eNodeB to improve its utilities in terms of rate and bit error rate(BER) while accounting for a link maintenance cost, and adapt this topology to environmental changes such as mobility while converging to a Nash equilibrium fast. Simulation results show that the proposed architecture converges to a tree network quickly and presents significant gains in terms of average rate utility reaching up to 50% compared to the star topology where all of the UE is directly connected to eNodeB.展开更多
文摘The multicast routing problem with multiple QoS constraints in networks with uncertain parameters is discussed, and a network model that is suitable to research such QoS multicast routing problem is described. The QMRGA, a multicast routing policy for Internet, mobile network or other highperformance networks is mainly presented, which is based on the genetic algorithm(GA), and can provide QoSsensitive paths in a scalable and flexible way in the network environment with uncertain parameters. The QMRGA can also optimize the network resources such as bandwidth and delay, and can converge to the optimal or nearoptimal solution within few iterations, even for the network environment with uncertain parameters. The incremental rate of computational cost can be close to a polynomial and is less than exponential rate. The performance measures of the QMRGA are evaluated by using simulations. The results show that QMRGA provides an available approach to QoS multicast routing in network environment with uncertain parameters.
基金supported by the National Science and Technology Major Project of China(2013ZX03005007-004)the National Natural Science Foundation of China(6120101361671179)
文摘Device to device(D2 D) multi-hop communication in multicast networks solves the contradiction between high speed requirements and limited bandwidth in regional data sharing communication services. However, most networking models demand a large control overhead in eNodeB. Moreover, the topology should be calculated again due to the mobility of terminals, which causes the long delay. In this work, we model multicast network construction in D2 D communication through a fuzzy mathematics and game theory based algorithm. In resource allocation, we assume that user equipment(UE) can detect the available frequency and the fuzzy mathematics is introduced to describe an uncertain relationship between the resource and UE distributedly, which diminishes the time delay. For forming structure, a distributed myopic best response dynamics formation algorithm derived from a novel concept from the coalitional game theory is proposed, in which every UE can self-organize into stable structure without the control from eNodeB to improve its utilities in terms of rate and bit error rate(BER) while accounting for a link maintenance cost, and adapt this topology to environmental changes such as mobility while converging to a Nash equilibrium fast. Simulation results show that the proposed architecture converges to a tree network quickly and presents significant gains in terms of average rate utility reaching up to 50% compared to the star topology where all of the UE is directly connected to eNodeB.