期刊文献+
共找到71篇文章
< 1 2 4 >
每页显示 20 50 100
基于卷积神经网络轻量化的改进SSD异纤检测方法 被引量:4
1
作者 胡胜 王紫悦 +3 位作者 张守京 李博豪 赵小惠 刘文慧 《计算机集成制造系统》 北大核心 2025年第1期171-181,共11页
精准检测棉花中混杂的小型异纤是保障纱线与织物质量的基础和关键。针对现有算法在棉花小型异纤检测中存在的漏检率高、网络结构复杂等问题,提出一种基于卷积神经网络轻量化的改进单步多框检测器(SSD)的棉花异纤检测方法。首先,通过引... 精准检测棉花中混杂的小型异纤是保障纱线与织物质量的基础和关键。针对现有算法在棉花小型异纤检测中存在的漏检率高、网络结构复杂等问题,提出一种基于卷积神经网络轻量化的改进单步多框检测器(SSD)的棉花异纤检测方法。首先,通过引入深度可分离卷积、倒残差结构等创新性设计,将SSD算法中原有骨干特征提取网络VGGNet16替换为MobileNetv2网络;然后,对于SSD算法中生成的候选框尺寸与棉花异纤大小不匹配导致棉花背景占比过高,从而引起正负样本不均衡的问题,采用K-means++算法对棉花异纤尺寸进行聚类分析,根据聚类结果修正候选框尺寸。通过算例进行验证,结果显示所提方法在实现模型轻量化的同时有效提升了异纤检测效果和计算效率。 展开更多
关键词 异纤检测 改进SSD 卷积神经网络 K-means++聚类 轻量化
在线阅读 下载PDF
基于SSD框架的自然场景盲文识别方法
2
作者 吴东 卢利琼 熊建芳 《计算机辅助设计与图形学学报》 北大核心 2025年第8期1415-1425,共11页
盲文是视障人士学习知识和技术的工具,正常人通常对盲文知之甚少,造成正常人与盲人之间的沟通障碍重重.为此,首先构建了自然场景盲文段图像数据集,该数据集中包含1157幅不同宽高比、不同背景的盲文段图像和对应的标签信息;随后分析自然... 盲文是视障人士学习知识和技术的工具,正常人通常对盲文知之甚少,造成正常人与盲人之间的沟通障碍重重.为此,首先构建了自然场景盲文段图像数据集,该数据集中包含1157幅不同宽高比、不同背景的盲文段图像和对应的标签信息;随后分析自然场景图像中盲文的特点,并基于SSD框架提出自然场景盲文识别方法.所提方法根据盲文字符尺寸小且具有固定宽高比的特点选择用于识别的特征层,设计CNN结构、默认框大小、盲文字符标签、图像输入策略和损失函数,以提高盲文字符识别的准确率;根据盲文字符中盲文点位于边缘区域的特点设计像素层面的注意力机制,提高盲文字符识别的回归率.实验结果表明,在所构建的盲文段图像数据集上,所提方法的H值达到0.903,盲文字符检测速度为66.22帧/s;与SSD,Faster R-CNN,EAST,以及基于CNN的盲文识别方法EAST-Edge和UNet-Braille相比,该方法的盲文识别性能提升明显. 展开更多
关键词 自然场景图像 盲文识别 SSD 卷积神经网络
在线阅读 下载PDF
基于SSD与图像变换的镜下矿物光片智能识别
3
作者 侯振隆 申晋容 +1 位作者 魏继康 赵文天 《东北大学学报(自然科学版)》 北大核心 2025年第6期131-137,154,共8页
在矿物识别中,当识别伴生矿物时,有时会产生漏判、误判.为了解决上述问题,开展了显微镜下矿物的智能化识别方法研究.首先,改进了SSD网络并结合图像变换构建了一种智能识别方法;其次,将该方法应用于中国辽宁省某铁矿光片的显微镜下矿物图... 在矿物识别中,当识别伴生矿物时,有时会产生漏判、误判.为了解决上述问题,开展了显微镜下矿物的智能化识别方法研究.首先,改进了SSD网络并结合图像变换构建了一种智能识别方法;其次,将该方法应用于中国辽宁省某铁矿光片的显微镜下矿物图像,通过试验证明了方法的准确性;最后,确定了学习率、批量尺寸对损失函数的影响,使用梯度下降法进一步提高了识别精度.在试验中,识别精度超过90%,最高可达100%,损失函数值最小值约为0.008.结果表明,提出的方法具有较强的矿物识别能力. 展开更多
关键词 矿物识别 深度学习 SSD 图像变换 矿物含量估算
在线阅读 下载PDF
多尺度增强特征融合的钢表面缺陷目标检测 被引量:4
4
作者 林珊玲 彭雪玲 +3 位作者 王栋 林志贤 林坚普 郭太良 《光学精密工程》 EI CAS CSCD 北大核心 2024年第7期1075-1086,共12页
针对轻量级目标检测算法在钢表面缺陷检测任务中识别精度低的问题,提出一种多尺度增强特征融合的钢表面缺陷目标检测算法。该算法采用提出的自适应加权融合模块为不同层级特征自适应计算融合权重,将深层语义与浅层细节进行加权融合,使... 针对轻量级目标检测算法在钢表面缺陷检测任务中识别精度低的问题,提出一种多尺度增强特征融合的钢表面缺陷目标检测算法。该算法采用提出的自适应加权融合模块为不同层级特征自适应计算融合权重,将深层语义与浅层细节进行加权融合,使得浅层特征在不丢失细节信息的同时获得丰富的深层语义。利用提出的空间特征增强模块从3个独立方向强化融合特征,通过引出残差旁路增强网络结构的稳定性,使卷积过程能够挖掘到更多的关键信息。根据先验框与真实框的整体交并程度为模型选择更为合适的训练样本。实验结果表明,该算法的检测精度达到80.47%,相比原始算法提升6.81%。该算法的参数量为2.36 M,计算量为952.67 MFLOPs,能快速且高精度检测钢材表面的缺陷信息,具有较高的应用价值。 展开更多
关键词 缺陷检测 单发多框检测器 增强特征融合 自适应加权融合 空间特征增强
在线阅读 下载PDF
多分支细化的拥挤行人检测算法
5
作者 袁姮 王嘉丽 张晟翀 《计算机工程与应用》 CSCD 北大核心 2024年第22期230-239,共10页
拥挤行人检测是目前小目标检测领域的研究热点,针对拥挤行人检测场景中人物密集以及遮挡造成的漏检问题,提出一种改进SSD(single shot multi-box detector)目标检测算法。将浅层Vgg(visual geometry group)网络平原结构使用多分支细化... 拥挤行人检测是目前小目标检测领域的研究热点,针对拥挤行人检测场景中人物密集以及遮挡造成的漏检问题,提出一种改进SSD(single shot multi-box detector)目标检测算法。将浅层Vgg(visual geometry group)网络平原结构使用多分支细化联合归一化(batch normalization,BN)操作增加分支结构,并重命名为多分支细化(multibranch thinning)网络结构,使其可以细化浅层语义信息,提高网络泛化能力,充分表达行人信息;将改进后的Ghost模型替换多分支细化网络中的3×3卷积,利用Ghost模型中cheap_operation卷积降低因多分支结构增加的模型参数量,使用primary_conv提升浅层网络的特征提取能力,加强网络识别能力;使用二范式取代差值平方的形式改进Huber损失函数,增强网络训练的稳定性,使其达到较优的收敛效果。在Wider_Person拥挤行人检测数据集上的检测结果表明,提出的改进SSD目标检测算法MAP50达到72.9%,领先YOLO-X算法7.4个百分点,领先基线算法3.5个百分点,领先其他先进算法平均14.4个百分点,验证了该算法在行人检测中的可行性,满足遮挡行人场景的检测要求。 展开更多
关键词 行人检测 目标检测 SSD GhostModule
在线阅读 下载PDF
基于特征融合的SSD视觉小目标检测 被引量:12
6
作者 王冬丽 廖春江 +1 位作者 牟金震 周彦 《计算机工程与应用》 CSCD 北大核心 2020年第16期31-36,共6页
针对SSD算法在检测目标过程中对小目标检测效果差的缺陷,提出了特征融合的SSD方法。该方法充分融合深浅层特征信息以提升网络模型对小目标的检测能力,为更好地检测小目标,将先验框尺寸相对原图比列进行调整,同时对SSD模型相应超参数值... 针对SSD算法在检测目标过程中对小目标检测效果差的缺陷,提出了特征融合的SSD方法。该方法充分融合深浅层特征信息以提升网络模型对小目标的检测能力,为更好地检测小目标,将先验框尺寸相对原图比列进行调整,同时对SSD模型相应超参数值进行调整。实验结果表明,检测精度mAP较SSD提高3.4个百分点,对小目标Bottle、Chair、Plant检测精度分别提升8.7个百分点、3.4个百分点和7.1个百分点。检测精度mAP较当前一系列性能优异的目标检测算法有显著提高。通过拓展实验进一步证明改进算法成功检测到了大多数SSD算法没有检测到的小目标,提高了平均检测准确率。 展开更多
关键词 小目标检测 特征融合 SSD(Single Shot multibox Detector) 特征增强 PASCAL VOC2007
在线阅读 下载PDF
一种基于机器视觉的精准注意力追踪系统 被引量:5
7
作者 刘纪元 祁瀚文 +2 位作者 刘志诚 费敏锐 张堃 《系统仿真学报》 CAS CSCD 北大核心 2023年第10期2087-2100,共14页
针对学生注意力分配困难和对学习影响等问题,提出一种基于机器视觉的精准注意力追踪系统。该系统包括图像采集装置和精准的注意力追踪算法。图像采集装置可以获得更清晰的眼部区域图像。瞳孔中心定位算法用轻量级的MobileNet v3替换VGG1... 针对学生注意力分配困难和对学习影响等问题,提出一种基于机器视觉的精准注意力追踪系统。该系统包括图像采集装置和精准的注意力追踪算法。图像采集装置可以获得更清晰的眼部区域图像。瞳孔中心定位算法用轻量级的MobileNet v3替换VGG16(visual geometry group network),采用两级特征融合和中心关键点预测技术,提高了检测速度和准确率。该算法检测速度可达36帧/s,准确率为97.42%。视线追踪算法旨在解决头部偏移的影响,实现对视线的精确追踪。研发了一款面向学龄儿童的阅读认知评价交互软件。该软件利用采集到的视线坐标计算相关眼动指标,再通过心理学理论分析建模来评估学龄儿童的思维认知能力,为心理学和教育学相关领域研究提供了参考和借鉴。 展开更多
关键词 瞳孔定位 改进型SSD(single shot multibox detector)算法 Eye-ORB(oriented FAST and rotated brief)算法 阅读认知 注意力追踪
在线阅读 下载PDF
基于密集模块与特征融合的SSD目标检测算法 被引量:5
8
作者 周凡 朴燕 秦晓伟 《计算机工程与应用》 CSCD 北大核心 2020年第16期105-111,共7页
通过对原SSD(Single Shot Multibox Detector)模型的研究与分析,针对其对小目标检测能力较弱的问题,提出了一种基于密集模块与特征融合操作的改进模型。该模型以Inception-ResNet-V2与DenseNet为基础,吸取了inception模块中稀疏连接与... 通过对原SSD(Single Shot Multibox Detector)模型的研究与分析,针对其对小目标检测能力较弱的问题,提出了一种基于密集模块与特征融合操作的改进模型。该模型以Inception-ResNet-V2与DenseNet为基础,吸取了inception模块中稀疏连接与密集网络中密集连接的研究思路,将两种方法融合在一起,提出了Inception-Dense特征提取结构。在多尺度检测的部分,借鉴并改进了特征金字塔的特征融合模块来加强对中小目标的检测能力。根据改进模型及实验数据集的相关特性,对默认框的映射机制也进行了重新设定。结果表明:该方法在Kitti数据集上的平均测试精确度(mAP)为83.8%;识别率相比于原SSD模型的72.8%,提升了11个百分点。FPS方面也有接近38%的提升,从原来的39提升到了54。 展开更多
关键词 深度学习 SSD(Single Shot multibox Detector) 目标检测 神经网络
在线阅读 下载PDF
基于改进SSD的电力设备红外图像异常自动检测方法 被引量:77
9
作者 王旭红 李浩 +1 位作者 樊绍胜 蒋志鹏 《电工技术学报》 EI CSCD 北大核心 2020年第S01期302-305,306-310,共9页
为实现各类巡检机器人、无人机等智能电力巡检设备所携红外热像仪采集的红外图像自动检测,该文提出基于改进SSD的电力设备红外图像异常自动检测方法。对收集的典型故障电力设备红外图像统一预处理;标注电力设备及异常区域并制作标准数据... 为实现各类巡检机器人、无人机等智能电力巡检设备所携红外热像仪采集的红外图像自动检测,该文提出基于改进SSD的电力设备红外图像异常自动检测方法。对收集的典型故障电力设备红外图像统一预处理;标注电力设备及异常区域并制作标准数据集;搭建检测网络;读入数据与预训练模型到搭建的网络进行微调训练验证,得到最终模型文件并测试。实验表明,该方法泛化性强,准确率较高,能达到实时自动检测红外图像下多类典型电力设备并定位异常发热区域的效果,将使现有电力巡检设备实现“智能+”。 展开更多
关键词 电力设备异常检测 红外图像 SSD 智能巡检
在线阅读 下载PDF
基于SSD网络模型的多目标检测算法 被引量:15
10
作者 蔡汉明 赵振兴 +1 位作者 韩露 曾祥永 《机电工程》 CAS 2017年第6期685-688,共4页
针对现代化工厂中视觉机器人或智能终端处理多目标检测算法的计算任务繁重、运算速度较慢等问题,将网络通信技术应用到算法处理中进行了在线检测。对TCP/IP协议进行了研究,建立了智能终端和云端之间的关系,提出了将智能终端采集到的图... 针对现代化工厂中视觉机器人或智能终端处理多目标检测算法的计算任务繁重、运算速度较慢等问题,将网络通信技术应用到算法处理中进行了在线检测。对TCP/IP协议进行了研究,建立了智能终端和云端之间的关系,提出了将智能终端采集到的图像数据进行预处理然后使用基于TCP的Socket多线程通信方式将图像数据送入云端,在云端的多台计算机上同时使用SSD网络模型的多目标检测算法进行了并行处理,并将结果传回智能终端。利用计算机单机与智能终端在线检测在处理时间上进行了对比试验。试验结果表明:在线检测速度稍慢,但已满足实际需求;智能终端在线检测降低了对智能机器人终端硬件的要求,回收的数据可以再利用,并且可以实现算法动态升级。 展开更多
关键词 目标检测 卷积神经网络 SSD 智能机器人 SOCKET网络通信
在线阅读 下载PDF
嵌入遮挡关系模块的SSD模型的输电线路图像金具检测 被引量:11
11
作者 赵振兵 江爱雪 +2 位作者 戚银城 张薇 赵文清 《智能系统学报》 CSCD 北大核心 2020年第4期656-662,共7页
为了提升深度学习目标检测模型在输电线路金具自动化检测任务中的准确率,针对金具检测数据集中金具目标标注框之间不可避免地广泛存在相交而导致金具目标检测定位不准确的问题,本文利用相交区域的相似性作为金具目标的上下文信息,提出... 为了提升深度学习目标检测模型在输电线路金具自动化检测任务中的准确率,针对金具检测数据集中金具目标标注框之间不可避免地广泛存在相交而导致金具目标检测定位不准确的问题,本文利用相交区域的相似性作为金具目标的上下文信息,提出目标间遮挡关系的描述方法,用于规则性描述图像中金具目标间的相互遮挡,设计遮挡关系模块,并将其嵌入到单次多框检测器(single shot multibox detector,SSD)模型中。为了验证嵌入遮挡关系模块的SSD模型的有效性,选择了8类目标标注框普遍存在相交的小目标金具进行实验,实验使用的金具检测数据集的训练集和测试集中金具目标数分别为6271和1713。实验证明,原始SSD模型的平均精度均值(mean average precision,mAP)为72.10%,嵌入遮挡关系模块的SSD模型的m AP为76.56%,性能提升了4.46%。 展开更多
关键词 输电线路金具 遮挡度 遮挡关系描述 遮挡关系模块 SSD 标注框 目标检测 深度学习
在线阅读 下载PDF
基于字典学习与SSD的不完整昆虫图像稻飞虱识别分类 被引量:7
12
作者 林相泽 张俊媛 +2 位作者 徐啸 朱赛华 刘德营 《农业机械学报》 EI CAS CSCD 北大核心 2021年第9期165-171,共7页
为了解决图像采集过程中由于昆虫图像获取不完整而导致整体稻飞虱识别精度低、速度慢的问题,提出了一种基于字典学习和SSD的不完整稻飞虱图像分类方法。首先,使用自主研发的野外昆虫图像采集装置采集稻飞虱图像,构建小型图像集。然后,... 为了解决图像采集过程中由于昆虫图像获取不完整而导致整体稻飞虱识别精度低、速度慢的问题,提出了一种基于字典学习和SSD的不完整稻飞虱图像分类方法。首先,使用自主研发的野外昆虫图像采集装置采集稻飞虱图像,构建小型图像集。然后,将采集的稻田昆虫图像进行阈值分割,得到单一稻田昆虫图像;对单一昆虫图像进行分块处理,得到带有背景信息和特征信息的混合子图像块集;使用子图像块作为字典原子来构建过完备字典,并对其进行初始化和优化更新;将更新后的过完备字典作为训练集输入SSD算法中进行训练,得到训练模型。最后,将采集的包含不完整稻田昆虫的图像在训练集模型上进行测试,并将测试结果与BPNN(Back propagation neural network)、SVM(Support vector machines)、稀疏表示等方法进行对比。试验结果表明,所提出的基于字典学习和SSD的稻飞虱识别与分类方法可以对不完整的昆虫图像进行准确快速的识别分类,其中,分类速度可达22 f/s,识别精度可达89.3%,对稻飞虱的监督、预警和防治提供了有效的信息与技术支持。 展开更多
关键词 稻飞虱 过完备字典 SSD 不完整图像 分类 识别
在线阅读 下载PDF
结合乐高滤波器和SSD的低光照图像融合检测方法 被引量:3
13
作者 李琳 刘学亮 +1 位作者 赵烨 纪平 《计算机科学》 CSCD 北大核心 2021年第7期213-218,共6页
针对低光照图像背景环境复杂导致目标检测易产生误检、漏检现象,提出了一种基于SSD目标检测的改进低光照图像精度和速度的方法。该方法先对低光照图像进行增强处理,然后将处理后的低光照图像和增强图像分别输入到融入乐高滤波器的SSD网... 针对低光照图像背景环境复杂导致目标检测易产生误检、漏检现象,提出了一种基于SSD目标检测的改进低光照图像精度和速度的方法。该方法先对低光照图像进行增强处理,然后将处理后的低光照图像和增强图像分别输入到融入乐高滤波器的SSD网络结构中进行训练检测,通过得到的两种检测模型对处理后的数据集进行检测,最后融合检测结果候选框中的不重复框,筛选候选框中的重复框,标记出正确位置的目标,从而提升对低光照图像检测的精度。在网络结构不同位置融入乐高滤波器,模型参数量分别减少8.9%和29.5%,浮点运算次数下降6.8%和34.9%,检测框融合处理后检测精度得到了3%~7%的提升。该方法更符合实际应用,有效提升了低光照图像的检测速度和精度,扩大了目标检测的应用范围。 展开更多
关键词 目标检测 低光照图像 SSD算法 乐高滤波器 融合
在线阅读 下载PDF
基于残差网络和改进特征金字塔的油田作业现场目标检测算法 被引量:5
14
作者 梁鸿 李洋 +2 位作者 邵明文 李传秀 张兆雷 《科学技术与工程》 北大核心 2020年第11期4442-4450,共9页
针对单点多盒检测器(single shot multibox detector,SSD)对小目标识别率低的问题,提出一种基于残差网络和改进特征金字塔(feature pyramid networks,FPN)的RP-SSD(residual and pyramid SSD)算法,并将其应用于油田安防领域。为了得到... 针对单点多盒检测器(single shot multibox detector,SSD)对小目标识别率低的问题,提出一种基于残差网络和改进特征金字塔(feature pyramid networks,FPN)的RP-SSD(residual and pyramid SSD)算法,并将其应用于油田安防领域。为了得到小物体更多的信息,首先在特征金字塔中增加上采样模块,并在上采样模块之后添加预测模块,之后采用空洞卷积增大Conv43的感受野。RP-SSD网络变深,针对RP-SSD在反向传播过程中存在梯度爆炸或梯度消失的问题,采用跳层连接的方式改进基础网络。RP-SSD在PASCAL VOC测试的准确率(meanaverage precision,mAP)为78.9%,比SSD提高了1.7%,其中对于目标较小的bottle类提高了8.9%。实验结果表明,RP-SSD对小目标检测的性能提高显著,同时RP-SSD在GTX 1080Ti上测试的速度为32帧/s,可见RP-SSD可以达到实时处理的要求。 展开更多
关键词 深度学习 单点多盒检测器(SSD) 小目标检测 特征金字塔 残差网络 空洞卷积 油田安防
在线阅读 下载PDF
基于深度学习的肺炎图像目标检测 被引量:6
15
作者 何迪 刘立新 +3 位作者 刘玉杰 熊丰 齐美捷 张周锋 《中国生物医学工程学报》 CAS CSCD 北大核心 2022年第4期443-451,共9页
肺炎是一种严重危害身体健康的疾病,通常使用肺部X光片进行检查。肺炎诊断是肺炎治疗前非常重要的环节,但是由于肺部其他疾病的干扰、医疗数据的爆发式增长以及专业病理医生的缺乏等,导致肺炎的准确诊断较为困难。深度学习能够模仿人脑... 肺炎是一种严重危害身体健康的疾病,通常使用肺部X光片进行检查。肺炎诊断是肺炎治疗前非常重要的环节,但是由于肺部其他疾病的干扰、医疗数据的爆发式增长以及专业病理医生的缺乏等,导致肺炎的准确诊断较为困难。深度学习能够模仿人脑的机制准确高效地解释医学图像数据,在肺炎图像检测方面获得了广泛应用。构建了3种基于深度学习的图像目标检测模型,单发多框探测器(SSD)、faster-RCNN和faster-RCNN优化模型,对来自Kaggle数据集的26 684张带标签的肺部X光图像进行研究。原始X光图像经预处理后输入3种深度学习模型,分别对单处和两处病灶区域进行目标检测。随机选取500张测试图像,利用损失函数、分类准确率、回归精度和误检病灶数等指标对各模型的性能进行评估。结果表明,faster-RCNN的性能指标优于SSD;Faster-RCNN优化模型的性能指标均优于其他两种模型,其损失函数值小且可快速达到稳定,平均分类准确率为93.7%,平均回归精度为79.8%,且误检病灶数为0。该方法有助于肺炎的准确识别和诊断。 展开更多
关键词 目标检测 肺炎图像 深度学习 更快速区域卷积神经网络(faster-RCNN)模型 单发多框探测器(SSD)模型
在线阅读 下载PDF
基于改进SSD的工件定位算法 被引量:2
16
作者 李琳 符明恒 +1 位作者 张铁 邹焱飚 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2023年第6期1260-1269,共10页
工业机器人完成工件的拾取、分拣与装配等任务,需要获得准确的位置信息。而目标检测算法的回归损失函数的设定会直接影响预测框的定位准确性。针对SSD原始回归损失函数忽略4个边界信息的相关性及与评价指标IoU变化不匹配等问题,提出了... 工业机器人完成工件的拾取、分拣与装配等任务,需要获得准确的位置信息。而目标检测算法的回归损失函数的设定会直接影响预测框的定位准确性。针对SSD原始回归损失函数忽略4个边界信息的相关性及与评价指标IoU变化不匹配等问题,提出了一种基于改进SSD的工件定位算法。所提算法以高效交并比(EIoU)为SSD的回归损失函数,将4个边界信息作为一个整体,并添加了中心点损失和边长损失2个惩罚项分别表征预测框与真实框的中心点相对距离和边长差异,解决了边框回归不准确的问题。实验结果表明:所提算法能把定位平均误差控制在0.18 mm以内,误差峰值控制在0.76 mm以内。所提算法能有效提高工件的定位精度,适用于不同类型的工件或其他类似的定位任务,具有良好的工业应用前景。 展开更多
关键词 工件 定位 损失函数 单步多框目标检测 高效交并比
在线阅读 下载PDF
用于交通标志检测的窗口大小聚类残差SSD模型 被引量:4
17
作者 宋青松 王兴莉 +3 位作者 张超 陈禹 宋焕生 KHATTAK Asad Jan 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第10期133-140,共8页
SSD通常被认为适合于求解小目标图像检测问题,但在特征表征和检测效率两方面还存在改进空间.提出一种聚类残差SSD模型,一方面将原始SSD模型中的VGG16基础网络替换为更深的ResNet50残差网络,以改善特征表征能力.另一方面采用K-均值聚类... SSD通常被认为适合于求解小目标图像检测问题,但在特征表征和检测效率两方面还存在改进空间.提出一种聚类残差SSD模型,一方面将原始SSD模型中的VGG16基础网络替换为更深的ResNet50残差网络,以改善特征表征能力.另一方面采用K-均值聚类算法取代盲目搜索机制,确定SSD中默认窗口的大小,以改善检测效率.针对德国交通标志检测数据集,模型获得了97.1%mAP和每幅图像0.07 s的检测速度.针对中国交通标志数据集,模型获得89.7%mAP和每幅图像0.08 s的检测速度.与原始SSD模型比较,本文所提模型的检测性能得到改善. 展开更多
关键词 交通标志检测 深度学习 单拍多盒探测器(SSD) K-均值 聚类
在线阅读 下载PDF
基于改进单点多盒检测器的大坝缺陷目标检测方法 被引量:2
18
作者 陈静 毛莺池 +2 位作者 陈豪 王龙宝 王子成 《计算机应用》 CSCD 北大核心 2021年第8期2366-2372,共7页
为提升大坝安全运维的效率,大坝缺陷目标检测模型有助于辅助巡检人员进行缺陷检测。大坝缺陷几何形状多变,而采用传统卷积方式进行特征提取的单点多盒检测器(SSD)模型无法适应缺陷的几何变换。针对上述问题,提出可变形卷积单步多框检测... 为提升大坝安全运维的效率,大坝缺陷目标检测模型有助于辅助巡检人员进行缺陷检测。大坝缺陷几何形状多变,而采用传统卷积方式进行特征提取的单点多盒检测器(SSD)模型无法适应缺陷的几何变换。针对上述问题,提出可变形卷积单步多框检测器(DFSSD)模型。首先将原始SSD的主干网络VGG16中的标准卷积替换为可变形卷积,用于处理缺陷的几何变换,并且通过学习卷积偏移量来提升模型的空间信息建模能力;其次针对不同特征的尺寸,改进先验框比例,从而提高模型对条形特征的检测精度与模型的泛化能力;最后为解决训练集正负样本不均衡的问题,采用改进的非极大值抑制(NMS)算法来优化学习效果。实验结果表明:DFSSD模型较基准模型SSD在大坝缺陷图像上的平均检测精度提升了5.98%。相较于基于区域的更快卷积神经网络(Faster R-CNN)和SSD模型,DFSSD模型在大坝缺陷目标检测精度提升上有较好的效果。 展开更多
关键词 目标检测 工程缺陷 可变形卷积 单点多盒检测器 非极大值抑制
在线阅读 下载PDF
基于目标像素宽度识别的电力设备红外成像单目测距改进算法 被引量:17
19
作者 杨帆 王梦珺 +2 位作者 谭天 卢旭 胡冉 《电工技术学报》 EI CSCD 北大核心 2023年第8期2244-2254,共11页
拍摄距离是影响红外成像效果的主要因素之一,拍摄距离的精确测量是提升红外成像检测设备故障准确度的主要方法之一。针对红外热像仪在电力设备巡检过程中的自动测距需求,该文研究了一种基于目标像素宽度识别的电力设备红外成像单目测距... 拍摄距离是影响红外成像效果的主要因素之一,拍摄距离的精确测量是提升红外成像检测设备故障准确度的主要方法之一。针对红外热像仪在电力设备巡检过程中的自动测距需求,该文研究了一种基于目标像素宽度识别的电力设备红外成像单目测距改进算法,实现了利用红外图像中电力设备的像素宽度自动识别距离,解决了电力设备红外成像因拍摄角度变换及设备拍摄不全导致的距离识别难度大的问题,实现了12种常见电力设备的距离自动识别。首先基于SSD算法进行红外图像中设备类型的自动识别,获得设备类别及识别框的坐标;接着分析电力红外巡检的特点,提出基于目标像素宽度对单目测距算法进行改进;再通过图像处理识别设备的最小邻接矩形,计算目标的像素宽度;最终输出设备类型及距离。实验结果表明,该改进算法可以满足电力设备红外图像的单目测距需求。 展开更多
关键词 电力设备 红外成像 单目测距 SSD
在线阅读 下载PDF
基于注意力机制的单发多框检测器算法 被引量:12
20
作者 赵辉 李志伟 张天琪 《电子与信息学报》 EI CSCD 北大核心 2021年第7期2096-2104,共9页
单发多框检测器SSD是一种在简单、快速和准确性之间有着较好平衡的目标检测器算法。SSD网络结构中检测层单一的利用方式使得特征信息利用不充分,将导致小目标检测不够鲁棒。该文提出一种基于注意力机制的单发多框检测器算法ASSD。ASSD... 单发多框检测器SSD是一种在简单、快速和准确性之间有着较好平衡的目标检测器算法。SSD网络结构中检测层单一的利用方式使得特征信息利用不充分,将导致小目标检测不够鲁棒。该文提出一种基于注意力机制的单发多框检测器算法ASSD。ASSD算法首先利用提出的双向特征融合模块进行特征信息融合以获取包含丰富细节和语义信息的特征层,然后利用提出的联合注意力单元进一步挖掘重点特征信息进而指导模型优化。最后,公共数据集上进行的一系列相关实验表明ASSD算法有效提高了传统SSD算法的检测精度,尤其适用于小目标检测。 展开更多
关键词 目标检测 注意力机制 特征融合 单发多框检测器
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部