期刊文献+
共找到85,920篇文章
< 1 2 250 >
每页显示 20 50 100
Belief exponential divergence for D-S evidence theory and its application in multi-source information fusion 被引量:2
1
作者 DUAN Xiaobo FAN Qiucen +1 位作者 BI Wenhao ZHANG An 《Journal of Systems Engineering and Electronics》 CSCD 2024年第6期1454-1468,共15页
Dempster-Shafer evidence theory is broadly employed in the research of multi-source information fusion.Nevertheless,when fusing highly conflicting evidence it may pro-duce counterintuitive outcomes.To address this iss... Dempster-Shafer evidence theory is broadly employed in the research of multi-source information fusion.Nevertheless,when fusing highly conflicting evidence it may pro-duce counterintuitive outcomes.To address this issue,a fusion approach based on a newly defined belief exponential diver-gence and Deng entropy is proposed.First,a belief exponential divergence is proposed as the conflict measurement between evidences.Then,the credibility of each evidence is calculated.Afterwards,the Deng entropy is used to calculate information volume to determine the uncertainty of evidence.Then,the weight of evidence is calculated by integrating the credibility and uncertainty of each evidence.Ultimately,initial evidences are amended and fused using Dempster’s rule of combination.The effectiveness of this approach in addressing the fusion of three typical conflict paradoxes is demonstrated by arithmetic exam-ples.Additionally,the proposed approach is applied to aerial tar-get recognition and iris dataset-based classification to validate its efficacy.Results indicate that the proposed approach can enhance the accuracy of target recognition and effectively address the issue of fusing conflicting evidences. 展开更多
关键词 Dempster-Shafer(D-S)evidence theory multi-source information fusion conflict measurement belief expo-nential divergence(BED) target recognition
在线阅读 下载PDF
A multi-source information fusion layer counting method for penetration fuze based on TCN-LSTM 被引量:1
2
作者 Yili Wang Changsheng Li Xiaofeng Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期463-474,共12页
When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ... When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ferromagnetic materials,thereby posing challenges in accurately determining the number of layers.To address this issue,this research proposes a layer counting method for penetration fuze that incorporates multi-source information fusion,utilizing both the temporal convolutional network(TCN)and the long short-term memory(LSTM)recurrent network.By leveraging the strengths of these two network structures,the method extracts temporal and high-dimensional features from the multi-source physical field during the penetration process,establishing a relationship between the multi-source physical field and the distance between the fuze and the target plate.A simulation model is developed to simulate the overload and magnetic field of a projectile penetrating multiple layers of target plates,capturing the multi-source physical field signals and their patterns during the penetration process.The analysis reveals that the proposed multi-source fusion layer counting method reduces errors by 60% and 50% compared to single overload layer counting and single magnetic anomaly signal layer counting,respectively.The model's predictive performance is evaluated under various operating conditions,including different ratios of added noise to random sample positions,penetration speeds,and spacing between target plates.The maximum errors in fuze penetration time predicted by the three modes are 0.08 ms,0.12 ms,and 0.16 ms,respectively,confirming the robustness of the proposed model.Moreover,the model's predictions indicate that the fitting degree for large interlayer spacings is superior to that for small interlayer spacings due to the influence of stress waves. 展开更多
关键词 Penetration fuze Temporal convolutional network(TCN) Long short-term memory(LSTM) Layer counting multi-source fusion
在线阅读 下载PDF
Three-dimensional finite-time optimal cooperative guidance with integrated information fusion observer
3
作者 Yiao Zhan Linwei Wang Di Zhou 《Defence Technology(防务技术)》 2025年第4期12-28,共17页
Intercepting high-maneuverability hypersonic targets in near-space environments poses significant challenges due to their extreme speeds and evasive capabilities.To address these challenges,this study presents an inte... Intercepting high-maneuverability hypersonic targets in near-space environments poses significant challenges due to their extreme speeds and evasive capabilities.To address these challenges,this study presents an integrated approach that combines a Three-Dimensional Finite-Time Optimal Cooperative Guidance Law(FTOC)with an Information Fusion Anti-saturation Predefined-time Observer(IFAPO).The proposed FTOC guidance law employs a nonlinear,non-quadratic finite-time optimal control strategy designed for rapid convergence within the limited timeframes of near-space interceptions,avoiding the need for remaining flight time estimation or linear decoupling inherent in traditional methods.To complement the guidance strategy,the IFAPO leverages multi-source information fusion theory and incorporates anti-saturation mechanisms to enhance target maneuver estimation.This method ensures accurate and real-time prediction of target acceleration while maintaining predefined convergence performance,even under complex interception conditions.By integrating the FTOC guidance law and IFAPO,the approach optimizes cooperative missile positioning,improves interception success rates,and minimizes fuel consumption,addressing practical constraints in military applications.Simulation results and comparative analyses confirm the effectiveness of the integrated approach,demonstrating its capability to achieve cooperative interception of highly maneuvering targets with enhanced efficiency and reduced economic costs,aligning with realistic combat scenarios. 展开更多
关键词 Anti-saturation predefined-time observer Nonlinear finite-time optimal control Three-dimensional guidance information fusion
在线阅读 下载PDF
Target intention prediction of air combat based on Mog-GRU-D network under incomplete information
4
作者 CHEN Jun SUN Xiang +1 位作者 XUE Zhe ZHANG Xinyu 《Journal of Systems Engineering and Electronics》 2025年第4期972-984,共13页
High complexity and uncertainty of air combat pose significant challenges to target intention prediction.Current interpolation methods for data pre-processing and wrangling have limitations in capturing interrelations... High complexity and uncertainty of air combat pose significant challenges to target intention prediction.Current interpolation methods for data pre-processing and wrangling have limitations in capturing interrelationships among intricate variable patterns.Accordingly,this study proposes a Mogrifier gate recurrent unit-D(Mog-GRU-D)model to address the com-bat target intention prediction issue under the incomplete infor-mation condition.The proposed model directly processes miss-ing data while reducing the independence between inputs and output states.A total of 1200 samples from twelve continuous moments are captured through the combat simulation system,each of which consists of seven dimensional features.To bench-mark the experiment,a missing valued dataset has been gener-ated by randomly removing 20%of the original data.Extensive experiments demonstrate that the proposed model obtains the state-of-the-art performance with an accuracy of 73.25%when dealing with incomplete information.This study provides possi-ble interpretations for the principle of target interactive mecha-nism,highlighting the model’s effectiveness in potential air war-fare implementation. 展开更多
关键词 intention prediction incomplete information gate recurrent unit(GRU) Mogrifier interaction mechanism.
在线阅读 下载PDF
Bayesian-based information extraction and aggregation approach for multilevel systems with multi-source data 被引量:4
5
作者 Lechang Yang Jianguo Zhang +1 位作者 Yanling Guo Qian Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第2期385-400,共16页
The ever-increasing complexity of industry facilities has made the reliability analysis and assessment an imperative yet tough work. Motivated by practical engineering requirement, this paper develops a Bayesian-based... The ever-increasing complexity of industry facilities has made the reliability analysis and assessment an imperative yet tough work. Motivated by practical engineering requirement, this paper develops a Bayesian-based information extraction and aggregation (BIEA) approach for system level reliability estimation of a complex system. It takes both subjective judgments and objective field outputs into consideration. Novel features of this approach is a unique information content based aggregation process, which allows a flexible application of this framework in separated modules on account for purpose. The coherency of which is guaranteed by the objective information content calculation. This work goes beyond the alternatives that deal with solely attributed data under ideal information circumstance, and investigates a more generic tool for real engineering application. Limitations embedded in traditional statistical modeling methods have been eliminated in a nature manner by information transition and integration. In addition, a double axis driving mechanism (DADM) for erecting the antenna of a satellite is demonstrated as case study for benefit illustration and effectiveness verification. © 2017 Beijing Institute of Aerospace Information. 展开更多
关键词 Artificial intelligence Data fusion information analysis information retrieval RELIABILITY Reliability analysis
在线阅读 下载PDF
Multi-sources information fusion algorithm in airborne detection systems 被引量:19
6
作者 Yang Yan Jing Zhanrong Gao Tan Wang Huilong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期171-176,共6页
To aim at the multimode character of the data from the airplane detecting system, the paper combines Dempster- Shafer evidence theory and subjective Bayesian algorithm and makes to propose a mixed structure multimode ... To aim at the multimode character of the data from the airplane detecting system, the paper combines Dempster- Shafer evidence theory and subjective Bayesian algorithm and makes to propose a mixed structure multimode data fusion algorithm. The algorithm adopts a prorated algorithm relate to the incertitude evaluation to convert the probability evaluation into the precognition probability in an identity frame, and ensures the adaptability of different data from different source to the mixed system. To guarantee real time fusion, a combination of time domain fusion and space domain fusion is established, this not only assure the fusion of data chain in different time of the same sensor, but also the data fusion from different sensors distributed in different platforms and the data fusion among different modes. The feasibility and practicability are approved through computer simulation. 展开更多
关键词 information fusion Dempster-Shafer evidence theory Subjective Bayesian algorithm Airplane detecting system
在线阅读 下载PDF
Multi-source Fuzzy Information Fusion Method Based on Bayesian Optimal Classifier 被引量:8
7
作者 SU Hong-Sheng 《自动化学报》 EI CSCD 北大核心 2008年第3期282-287,共6页
为了做常规贝叶斯的最佳的分类器,拥有处理模糊信息并且认识到推理过程的自动化的能力,一个新贝叶斯的最佳的分类器被建议,模糊信息嵌入。它不能仅仅有效地处理模糊信息,而且保留贝叶斯的最佳的分类器的学习性质。另外根据模糊集合... 为了做常规贝叶斯的最佳的分类器,拥有处理模糊信息并且认识到推理过程的自动化的能力,一个新贝叶斯的最佳的分类器被建议,模糊信息嵌入。它不能仅仅有效地处理模糊信息,而且保留贝叶斯的最佳的分类器的学习性质。另外根据模糊集合理论的进化,含糊的集合也是嵌入的进它产生含糊的贝叶斯的最佳的分类器。它能同时从积极、反向的方向模仿模糊信息的双重的特征。进一步,贝叶斯的最佳的分类器也是的集合对从积极、反向、不确定的方面就模糊信息的三方面的特征而言求婚了。最后,一个知识库的人工的神经网络(KBANN ) 被介绍认识到贝叶斯的最佳的分类器的自动推理。它不仅减少贝叶斯的最佳的分类器的计算费用而且改进它学习质量的分类。 展开更多
关键词 模糊信息 混合方法 贝叶斯最佳分类器 自动推理 神经网络
在线阅读 下载PDF
改进Informed RRT^(*)算法移动机器人路径规划 被引量:2
8
作者 鲁宇明 周羽逵 +2 位作者 郭鑫 池吕庭 戴骏 《计算机工程与应用》 北大核心 2025年第8期283-293,共11页
Informed RRT^(*)算法对初始解不敏感,规划出的路径太接近障碍物,导致路径不平滑。提出一种改进的Informed RRT^(*)路径规划算法,该算法改进了约束采样空间和引导策略。在采样初期,将采样区域限制在一个圆形区域,加快初始解收敛,在算法... Informed RRT^(*)算法对初始解不敏感,规划出的路径太接近障碍物,导致路径不平滑。提出一种改进的Informed RRT^(*)路径规划算法,该算法改进了约束采样空间和引导策略。在采样初期,将采样区域限制在一个圆形区域,加快初始解收敛,在算法规划的过程中引入人工势场中引力场和斥力场的思想,使机器人与障碍物保持安全距离,并向目标位置行进。对Informed RRT^(*)算法和基于目标偏置的Informed RRT^(*)算法(Goal-bias-Informed RRT^(*))以及改进后的Informed RRT^(*)算法进行比较实验,实验结果验证了改进后Informed RRT^(*)算法的有效性和优越性及稳定性。该算法较Informed RRT^(*)算法和Goal-bias-Informed RRT^(*)效率更高、更容易得到初始解、更安全、更平滑、更稳定。 展开更多
关键词 移动机器人 路径规划 随机采样 informed RRT^(*)算法 目标偏置 约束采样空间
在线阅读 下载PDF
基于多任务Informer模型的船舶轨迹预测及行为识别研究
9
作者 李世刚 刘克中 +3 位作者 陈立家 周乃祺 周阳 黄嘉韬 《中国航海》 北大核心 2025年第3期157-165,共9页
为有效预判航行风险,并为船舶避碰、交通管理等决策提供重要依据,研究了一种基于多任务Informer模型的船舶轨迹预测及行为识别模型。该模型以Informer框架为基础,并引入多任务学习模式,通过设计多任务损失函数将船舶行为识别与轨迹预测... 为有效预判航行风险,并为船舶避碰、交通管理等决策提供重要依据,研究了一种基于多任务Informer模型的船舶轨迹预测及行为识别模型。该模型以Informer框架为基础,并引入多任务学习模式,通过设计多任务损失函数将船舶行为识别与轨迹预测并联训练,解决了AIS数据中船舶行为不准确无法作为模型输入的问题;在模型训练时,并设计基于同方差不确定性的损失函数自适应更新策略,自适应分配两个任务的损失权重。利用太仓航段水域中的真实AIS数据进行试验中多任务的Informer船舶轨迹预测模型在轨迹预测中的损失比LSTM和Informer模型分别降低了40.2%和14.7%;在行为识别任务中多任务模型的识别准确率比LSTM和Informer模型分别提升了11.7%和5.95%。表明了多任务模型能在有效提升船舶轨迹预测的性能的同时实现船舶对行为的准确识别。 展开更多
关键词 轨迹预测 行为识别 AIS数据 informer模型 多任务学习
在线阅读 下载PDF
基于融合劣化指标和VMD-Informer的水电机组劣化趋势预测
10
作者 宋阿妮 陈亦真 +2 位作者 詹云峰 李超顺 付波 《中国农村水利水电》 北大核心 2025年第5期90-96,共7页
水电机组长期运行在恶劣环境下,异常振动更加频繁,逐渐出现疲劳、磨损,导致机组性能劣化。为保障机组的安全稳定运行,需要准确直观地反映水电机组运行并预测机组未来劣化状况,为机组状态检修提供重要依据。提出了一种基于融合劣化指标和... 水电机组长期运行在恶劣环境下,异常振动更加频繁,逐渐出现疲劳、磨损,导致机组性能劣化。为保障机组的安全稳定运行,需要准确直观地反映水电机组运行并预测机组未来劣化状况,为机组状态检修提供重要依据。提出了一种基于融合劣化指标和VMD-Informer的机组劣化趋势预测方法。首先构建KAN健康模型拟合工况参数与振摆值之间的映射关系,然后通过对比模型输出值与实测振摆值在不同指标下的差异得到多个劣化序列,运用遗传算法对多个劣化序列进行寻优获取融合劣化指标,兼顾多个指标的优势,更为准确地反映机组劣化趋势。之后用变分模态分解(VMD)将融合劣化序列分解为多个分量,最后利用Informer预测模型对分解后的各个分量进行多步预测并重构得到最终的预测结果,从而实现对机组运行状况的准确评估和预测。实例分析表明,所提方法能够生成可靠的劣化趋势,同时在预测上能学习劣化趋势序列的长期趋势和局部特征,预测精度更高。 展开更多
关键词 水电机组 劣化评估 退化预测 Kolmogorov-Arnold Network 遗传算法 informER
在线阅读 下载PDF
基于RF-Informer模型的月径流遥相关预报
11
作者 李继清 谢宇韬 +1 位作者 徐学军 吴亮 《水资源保护》 北大核心 2025年第3期39-45,共7页
为延长中长期径流预报的预见期,提高预报精度,从物理成因上考虑径流的影响因素,在前期降水径流的基础上增加遥相关因子,通过随机森林(RF)模型进行因子选择,引入长时间序列预报中表现良好的Informer模型,构建了月径流预报的RF-Informer模... 为延长中长期径流预报的预见期,提高预报精度,从物理成因上考虑径流的影响因素,在前期降水径流的基础上增加遥相关因子,通过随机森林(RF)模型进行因子选择,引入长时间序列预报中表现良好的Informer模型,构建了月径流预报的RF-Informer模型,并利用该模型对雅砻江流域两河口、锦西、二滩3个水库的入库月径流进行了预报。结果表明:将遥相关因子引入流域月径流预报可以延长预见期,提高预报精度;相较于线性相关法,基于RF模型选择预报因子可以挖掘因子间非线性关系,提升预报效果;与RF-LSTM、RF-SVM、RF-BP神经网络模型相比,RF-Informer模型的误差最小,预报精度最高。 展开更多
关键词 月径流预报 遥相关因子 随机森林模型 informer模型 雅砻江流域
在线阅读 下载PDF
基于Informer模型的航班延误预测
12
作者 杨新湦 游超 朱承元 《科学技术与工程》 北大核心 2025年第19期8282-8288,共7页
为能更加精准预测不同时段的航班延误态势,选用美国亚特兰大机场2023年全年的运行数据与相关气象数据进行实验,提出基于相关系分析(correlation analysis,CA),主成分分析(principal components analysis,PCA)和Informer模型的CA-PCA-Inf... 为能更加精准预测不同时段的航班延误态势,选用美国亚特兰大机场2023年全年的运行数据与相关气象数据进行实验,提出基于相关系分析(correlation analysis,CA),主成分分析(principal components analysis,PCA)和Informer模型的CA-PCA-Informer航班延误预测模型,采用MAE(mean absolute error)和RMSE(root mean square error)作为模型的评价指标进行预测误差分析。结果表明,CA-PCA-Informer模型比简单的组合模型预测效果更好,与CA-PCA-LSTM和CA-PCA-GRU模型相比模型误差最低,MAE和RMSE分别降低了20.2%~20.7%和12.7%~14.1%;CA-PCA-Informer模型对预测步长为1 h时预测更为精准,该模型可以为决策者提供更加准确的航班延误态势以保证航班的高效运行。 展开更多
关键词 民航交通运输 航班延误预测 informer模型 主成分分析 神经网络
在线阅读 下载PDF
融合改进Informer与迁移学习的风电功率预测
13
作者 郭利进 孙淼 衡安阳 《太阳能学报》 北大核心 2025年第7期371-377,共7页
为克服风电功率序列的不稳定性导致预测精度低以及一些风电场历史数据有限的问题,提出一种特征交互Informer与迁移学习(FIITL)的风电功率预测模型。首先提出特征交互(FI)机制用双通道输入进一步提取信息,并将迁移学习(TL)引入到预测模型... 为克服风电功率序列的不稳定性导致预测精度低以及一些风电场历史数据有限的问题,提出一种特征交互Informer与迁移学习(FIITL)的风电功率预测模型。首先提出特征交互(FI)机制用双通道输入进一步提取信息,并将迁移学习(TL)引入到预测模型中,提出循环微调迁移学习,将模型从源监测站迁移到目标站,实现在有限历史数据情况下预测性能的提升。最后,通过与传统Informer模型及其他基线预测方法比较,FIITL模型展现了在有限数据情况下的性能优势。 展开更多
关键词 迁移学习 风电功率 预测 informER 特征交互
在线阅读 下载PDF
LSTM与Informer融合预测冠层区域温度
14
作者 黄铝文 刘宇航 +1 位作者 屈昆仪 朱玉颖 《农业工程学报》 北大核心 2025年第8期222-232,共11页
针对传统温度预测方法难以充分捕捉多尺度信息,导致模型预测性能不佳等问题,该研究提出了一种基于Informer架构和长短时记忆网络(long short-term memory,LSTM)与多源数据融合的冠层区域温度预测模型。在编码层中,采用稀疏注意力机制提... 针对传统温度预测方法难以充分捕捉多尺度信息,导致模型预测性能不佳等问题,该研究提出了一种基于Informer架构和长短时记忆网络(long short-term memory,LSTM)与多源数据融合的冠层区域温度预测模型。在编码层中,采用稀疏注意力机制提取输入因子的多尺度信息及其与长时序数据之间的耦合关系;在解码层中,利用LSTM提取短期时序依赖,以增强时间序列的连贯性,同时引入改进的反向残差前馈网络(improved residual feedforward network,IRFFN)以优化模型结构。首先采用孤立森林法对数据进行异常值清理,并进行了归一化处理;然后使用斯皮尔曼相关系数法对冠层区域温度进行相关性分析,并选择相关程度较高的环境因子作为模型的输入特征;最终通过网格搜索法对超参数进行优化,并通过迭代训练实现模型的最优配置。通过与其他4种主流算法进行对比分析,提出的InformerLSTM在冠层区域温度预测方面表现出更高的精度,其平均绝对误差(mean absolute error,MAE)、均方根误差(root mean square error,RMSE)和决定系数(R^(2))分别达到了0.166、0.224℃和0.978,与基础模型Informer相比,冠层区域温度的均方根误差降低了0.448℃。该模型在时间序列预测方面具有较高的精度,为区域气象温度的中短期精准预测提供了一种新的技术方法。 展开更多
关键词 冠层 温度 非线性时间序列 长短期记忆神经网络 informER
在线阅读 下载PDF
基于xLSTM-Informer的瓦斯浓度预测模型研究
15
作者 谭波 杨宽 +5 位作者 隋龙琨 左云飞 高赛逸 汤松鹭 高科天 贾锦祥 《工矿自动化》 北大核心 2025年第9期81-89,共9页
针对矿井瓦斯浓度预测任务中存在的多变量非线性耦合、长期依赖建模能力不足及模型滞后响应严重等问题,提出了一种融合扩展型长短期记忆网络(xLSTM)与Informer结构的复合型预测模型(xLSTM-Informer)。将xLSTM作为前置处理器,通过多层残... 针对矿井瓦斯浓度预测任务中存在的多变量非线性耦合、长期依赖建模能力不足及模型滞后响应严重等问题,提出了一种融合扩展型长短期记忆网络(xLSTM)与Informer结构的复合型预测模型(xLSTM-Informer)。将xLSTM作为前置处理器,通过多层残差记忆单元提取短时间窗口内的波动模式与变量间的耦合信息,并将其转换为结构化时序序列表征,再将处理后的时序表示输入至Informer主干结构中,进一步在扩展的时间窗口中提取全局依赖关系与稳定趋势,从而在保持细节响应的同时增强预测的时序连续性。基于井下束管监测系统采集的多源环境参数数据,开展特征重要性分析,选取O_(2)浓度、温度与风速3个指标作为输入变量,构建输入特征体系。利用xLSTM提取深层时序特征,并通过Informer中引入的ProbSparse自注意力机制,有效捕捉时序特征中的全局依赖关系,从而提升模型对非平稳性瓦斯浓度预测的能力。为评估xLSTM-Informer模型在瓦斯浓度预测任务中的性能优势,与xLSTM模型、Transformer模型及经典Informer模型进行比较,结果表明:xLSTM-Informer模型在平均绝对误差(MAE)、均方根误差(RMSE)、平均绝对百分比误差(MAPE)与决定系数R^(2)上均取得最优性能,R^(2)达0.954,较对比模型分别提升了21.4%,17.8%和19.4%。为进一步验证xLSTM-Informer模型在瓦斯浓度预测任务中的有效性与适应性,选取某矿井综放工作面实测传感器数据进行实例验证,同时与LSTM-Transformer,RNN-Informer,LSTM-Informer和双向LSTM-Informer(BiLSTM-Informer)4类复合模型进行对比,结果表明:xLSTM-Informer模型在瓦斯浓度变化趋势与关键拐点的响应方面均优于对比模型,表现出较高的拟合性和时序同步性。 展开更多
关键词 瓦斯浓度预测 长时间序列预测 xLSTM informER ProbSparse自注意力机制
在线阅读 下载PDF
基于DWT-CNN-Informer模型的液压支架压力多步长预测
16
作者 张传伟 张刚强 +1 位作者 路正雄 李林岳 《中国安全生产科学技术》 北大核心 2025年第4期57-63,共7页
为了实现液压支架压力多步长精准预测,提出1种基于DWT-CNN-Informer模型的压力多步长预测方法,该方法利用离散小波变换(discrete wavelet transform, DWT)将预处理后的压力时序数据分解为趋势项和周期项频率分量;各频率分量输入卷积神... 为了实现液压支架压力多步长精准预测,提出1种基于DWT-CNN-Informer模型的压力多步长预测方法,该方法利用离散小波变换(discrete wavelet transform, DWT)将预处理后的压力时序数据分解为趋势项和周期项频率分量;各频率分量输入卷积神经网络(CNN)模型提取频率特征;提取的频率特征输入Informer编码器,经位置编码和多头概率稀疏自注意力机制捕捉时序变化特征,并结合自注意力蒸馏减少特征冗余;将Informer解码器改为全连接层,直接输出各分量多步长预测结果;重构叠加各分量多步长预测结果得到液压支架压力多步长预测结果。研究结果表明:在预测步长分别为6,12,24时,DWT-CNN-Informer模型相比LSTM、Informer、CNN-Informer模型在平均绝对误差(MAE)、均方根误差(RMSE)、对称平均绝对百分比误差(SMAPE)指标上均表现出更高预测精度。研究结果为液压支架压力精准预测提供有效方法。 展开更多
关键词 液压支架压力 多步长预测 离散小波变换 CNN模型 informer模型
在线阅读 下载PDF
基于ICEEMDAN-PE和IDBO-Informer组合模型的短期负荷预测 被引量:1
17
作者 于多 曹燚 +2 位作者 王海荣 赵翱东 曹倩 《中国电力》 北大核心 2025年第6期19-32,共14页
针对传统方法在处理复杂负荷数据时存在的噪声处理不足、特征提取能力有限及模型训练复杂等问题,提出了一种基于改进完全集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)-置... 针对传统方法在处理复杂负荷数据时存在的噪声处理不足、特征提取能力有限及模型训练复杂等问题,提出了一种基于改进完全集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)-置换熵(permutation entropy,PE)和改进蜣螂优化算法(improved dung beetle optimizer,IDBO)-Informer的创新组合预测模型。首先,该模型通过小波软阈值去噪算法预处理原始负荷数据,减少噪声干扰。其次,利用ICEEMDAN多尺度分解负荷数据,精准捕捉负荷特征,并采用置换熵评估分量复杂度。最后,对蜣螂优化算法进行改进,通过融合混沌与逆向学习策略进行种群初始化,引入自适应步长与凸透镜逆成像策略及随机差异变异策略,优化Informer预测模型参数,显著提升预测效率与准确性。实验结果表明,该模型在短期负荷预测中表现出色,平均绝对误差为81.3 MW(原始负荷数据范围约为500 MW至1 500 MW),均方根误差为109.2 MW,拟合系数评分为0.991,远优于传统方法,充分验证了模型的创新性和优越性。 展开更多
关键词 负荷预测 ICEEMDAN 改进蜣螂优化算法 informER
在线阅读 下载PDF
基于数字孪生和Informer-LSTM的滚动轴承剩余寿命预测 被引量:1
18
作者 王雅君 崔海峰 +1 位作者 刘云松 鞠鸿宇 《组合机床与自动化加工技术》 北大核心 2025年第7期135-140,共6页
为了能够精准地实现滚动轴承剩余使用寿命的预测,提出了一种使用数字孪生技术和时间序列预测结合的预测方法,并且对Informer的解码器进行修改,引入LSTM以增强序列建模能力,构建出Informer-LSTM混合模型进行预测。通过数字孪生技术建立... 为了能够精准地实现滚动轴承剩余使用寿命的预测,提出了一种使用数字孪生技术和时间序列预测结合的预测方法,并且对Informer的解码器进行修改,引入LSTM以增强序列建模能力,构建出Informer-LSTM混合模型进行预测。通过数字孪生技术建立轴承的虚拟模型,实现对轴承物理状态的监控和模拟,并为剩余使用寿命的预测提供数据,通过提取历史数据和数字孪生数据的时域和频域特征,建立数据集,并利用Informer-LSTM模型对收集到的时间序列数据进行处理,实现轴承的剩余寿命的预测。通过实验看出,该方法在预测滚动轴承剩余寿命方面具有较高的准确性和稳定性,可以为实现设备的智能维护和故障预防提供了有力支持。 展开更多
关键词 数字孪生 时间序列预测 informer-LSTM 剩余使用寿命
在线阅读 下载PDF
A guidance and control design with reduced information for a dual-spin stabilized projectile 被引量:2
19
作者 Yu Wang Jiyan Yu +1 位作者 Xiaoming Wang Jia Fangxiu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期494-505,共12页
In this paper,an integrated guidance and control method based on an adaptive path-following controller is proposed to control a spin-stabilized projectile with only translational motion information under the constrain... In this paper,an integrated guidance and control method based on an adaptive path-following controller is proposed to control a spin-stabilized projectile with only translational motion information under the constraint of an actuator,uncertainties in aerodynamic parameters and measurements,and control system complexity.Owing to the fairly high rotation speed,the dynamic model of this missile is strongly nonlinear,uncertain and coupled in pitch,yaw and roll channels.A theoretical equivalent resultant force and uncertainty compensation method are comprehensively used to realize decoupling of pitch and yaw.In response to the strong nonlinear and time-varying characteristics of the dynamic system,the quasi-linear model whose parameters are obtained by interpolation of points selected as the segmentation points in the trajectory envelope,is used for calculation in each step.To cope with the system uncertainty caused by model approximation,parameter uncertainty and ballistic interference,an extended state estimator is used to compensate the output feedback according to the test ballistic angle.In order to improve the tracking efficiency and ensure the tracking error convergence with only translational motion information,the virtual guide point,whose derivative is deduced according to the Lyapunov principle,is calculated in real time according to the projection relationship between the real-time position and the reference trajectory,and a virtual line-of-sight angle and the backstepping method are used for the design of the guidance and control system.In order to avoid the influence of control input saturation on the guidance and control performance due to the actuator limitation and improve the robustness of the system,an anti-saturation compensator is designed according to the two-step method.The feasibility and effectiveness of the path-following controller is verified through closed-loop flight simulations with measurement,control,and condition uncertainties.The results indicate that the designed controller can converge to the reference path and evidently decrease the distance between the impact point and target under different uncertainties. 展开更多
关键词 Spin-stabilized projectile Reduced information Path-following control Extended state observer Coupled nonlinear system Input saturation
在线阅读 下载PDF
Heterogeneous information fusion recognition method based on belief rule structure 被引量:1
20
作者 WANG Haibin GUAN Xin +1 位作者 YI Xiao SUN Guidong 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期955-964,共10页
To solve the problem that the existing situation awareness research focuses on multi-sensor data fusion,but the expert knowledge is not fully utilized,a heterogeneous informa-tion fusion recognition method based on be... To solve the problem that the existing situation awareness research focuses on multi-sensor data fusion,but the expert knowledge is not fully utilized,a heterogeneous informa-tion fusion recognition method based on belief rule structure is proposed.By defining the continuous probabilistic hesitation fuzzy linguistic term sets(CPHFLTS)and establishing CPHFLTS distance measure,the belief rule base of the relationship between feature space and category space is constructed through information integration,and the evidence reasoning of the input samples is carried out.The experimental results show that the proposed method can make full use of sensor data and expert knowledge for recognition.Compared with the other methods,the proposed method has a higher correct recognition rate under different noise levels. 展开更多
关键词 belief rule heterogeneous information intention recognition hesitation fuzzy linguistic
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部