期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Multi-resolution image segmentation based on Gaussian mixture model 被引量:5
1
作者 Tang Yinggan Liu Dong Guan Xinping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第4期870-874,共5页
Mixture model based image segmentation method, which assumes that image pixels are independent and do not consider the position relationship between pixels, is not robust to noise and usually leads to misclassificatio... Mixture model based image segmentation method, which assumes that image pixels are independent and do not consider the position relationship between pixels, is not robust to noise and usually leads to misclassification. A new segmentation method, called multi-resolution Ganssian mixture model method, is proposed. First, an image pyramid is constructed and son-father link relationship is built between each level of pyramid. Then the mixture model segmentation method is applied to the top level. The segmentation result on the top level is passed top-down to the bottom level according to the son-father link relationship between levels. The proposed method considers not only local but also global information of image, it overcomes the effect of noise and can obtain better segmentation result. Experimental result demonstrates its effectiveness. 展开更多
关键词 image segmentation multi-resolution Ganssian mixture model.
在线阅读 下载PDF
Application of multi-resolution analysis in sonar image denoising 被引量:3
2
作者 Shang Zhengguo Zhao Chunhui Wan Jian 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第6期1082-1089,共8页
Sonar images have complex background, low contrast, and deteriorative edges; these characteristics make it difficult for researchers to dispose the sonar objects. The multi-resolution analysis represents the signals i... Sonar images have complex background, low contrast, and deteriorative edges; these characteristics make it difficult for researchers to dispose the sonar objects. The multi-resolution analysis represents the signals in different scales efficiently, which is widely used in image processing. Wavelets are successful in disposing point discontinuities in one dimension, but not in two dimensions. The finite Ridgelet transform (FRIT) deals efficiently with the singularity in high dimension. It presents three improved denoising approaches, which are based on FRIT and used in the sonar image disposal technique. By experiment and comparison with traditional methods, these approaches not only suppress the artifacts, but also obtain good effect in edge keeping and SNR of the sonar image denoising. 展开更多
关键词 multi-resolution analysis wavelet transform ridgelet transform cycle sample adaptive denoisingenergy delamination
在线阅读 下载PDF
Fast image super-resolution algorithm based on multi-resolution dictionary learning and sparse representation 被引量:3
3
作者 ZHAO Wei BIAN Xiaofeng +2 位作者 HUANG Fang WANG Jun ABIDI Mongi A. 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第3期471-482,共12页
Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artif... Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artifact suppression. We propose a multi-resolution dictionary learning(MRDL) model to solve this contradiction, and give a fast single image SR method based on the MRDL model. To obtain the MRDL model, we first extract multi-scale patches by using our proposed adaptive patch partition method(APPM). The APPM divides images into patches of different sizes according to their detail richness. Then, the multiresolution dictionary pairs, which contain structural primitives of various resolutions, can be trained from these multi-scale patches.Owing to the MRDL strategy, our SR algorithm not only recovers details well, with less jag and noise, but also significantly improves the computational efficiency. Experimental results validate that our algorithm performs better than other SR methods in evaluation metrics and visual perception. 展开更多
关键词 single image super-resolution(SR) sparse representation multi-resolution dictionary learning(MRDL) adaptive patch partition method(APPM)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部