The reconstruction control of modular self-reconfigurable spacecraft (MSRS) is addressed using an adaptive sliding mode control (ASMC) scheme based on time-delay estimation (TDE) technology. In contrast to the ground,...The reconstruction control of modular self-reconfigurable spacecraft (MSRS) is addressed using an adaptive sliding mode control (ASMC) scheme based on time-delay estimation (TDE) technology. In contrast to the ground, the base of the MSRS is floating when assembled in orbit, resulting in a strong dynamic coupling effect. A TED-based ASMC technique with exponential reaching law is designed to achieve high-precision coordinated control between the spacecraft base and the robotic arm. TDE technology is used by the controller to compensate for coupling terms and uncertainties, while ASMC can augment and improve TDE’s robustness. To suppress TDE errors and eliminate chattering, a new adaptive law is created to modify gain parameters online, ensuring quick dynamic response and high tracking accuracy. The Lyapunov approach shows that the tracking errors are uniformly ultimately bounded (UUB). Finally, the on-orbit assembly process of MSRS is simulated to validate the efficacy of the proposed control scheme. The simulation results show that the proposed control method can accurately complete the target module’s on-orbit assembly, with minimal perturbations to the spacecraft’s attitude. Meanwhile, it has a high level of robustness and can effectively eliminate chattering.展开更多
新一代低压直流供用电系统(low voltage direct current supply and utilization system,LVDCSUS)强调了可再生能源的消纳以及直流用户侧电能产–销–储–用之间的协调统一,为推动直流用户侧灵活参与电力系统运行提供了全新思路。开展LV...新一代低压直流供用电系统(low voltage direct current supply and utilization system,LVDCSUS)强调了可再生能源的消纳以及直流用户侧电能产–销–储–用之间的协调统一,为推动直流用户侧灵活参与电力系统运行提供了全新思路。开展LVDCSUS用户侧电能的使用与生产相结合的研究,可有效挖掘直流用户侧的多元化电能资源灵活供给能力,为此该文首先依据LVDCSUS系统能量平衡关系将系统划分为全直流运行、余电上网运行、交流支撑运行3种运行模式;进而给出各模式下满足直流母线电压稳定、储能荷电状态均衡、灵活性电力资源利用三方面整体要求的协调策略;最后建立了多运行模式切换规则,实现通过切换多种运行模式改变能量协调控制策略,使LVDCSUS在稳定运行状态下主动参与电力系统能量互动。仿真结果验证了LVDCSUS多运行模式控制策略的有效性和可靠性。展开更多
基金This study was supported by the National Defense Science and Technology Innovation Zone of China(Grant No.00205501).
文摘The reconstruction control of modular self-reconfigurable spacecraft (MSRS) is addressed using an adaptive sliding mode control (ASMC) scheme based on time-delay estimation (TDE) technology. In contrast to the ground, the base of the MSRS is floating when assembled in orbit, resulting in a strong dynamic coupling effect. A TED-based ASMC technique with exponential reaching law is designed to achieve high-precision coordinated control between the spacecraft base and the robotic arm. TDE technology is used by the controller to compensate for coupling terms and uncertainties, while ASMC can augment and improve TDE’s robustness. To suppress TDE errors and eliminate chattering, a new adaptive law is created to modify gain parameters online, ensuring quick dynamic response and high tracking accuracy. The Lyapunov approach shows that the tracking errors are uniformly ultimately bounded (UUB). Finally, the on-orbit assembly process of MSRS is simulated to validate the efficacy of the proposed control scheme. The simulation results show that the proposed control method can accurately complete the target module’s on-orbit assembly, with minimal perturbations to the spacecraft’s attitude. Meanwhile, it has a high level of robustness and can effectively eliminate chattering.
文摘新一代低压直流供用电系统(low voltage direct current supply and utilization system,LVDCSUS)强调了可再生能源的消纳以及直流用户侧电能产–销–储–用之间的协调统一,为推动直流用户侧灵活参与电力系统运行提供了全新思路。开展LVDCSUS用户侧电能的使用与生产相结合的研究,可有效挖掘直流用户侧的多元化电能资源灵活供给能力,为此该文首先依据LVDCSUS系统能量平衡关系将系统划分为全直流运行、余电上网运行、交流支撑运行3种运行模式;进而给出各模式下满足直流母线电压稳定、储能荷电状态均衡、灵活性电力资源利用三方面整体要求的协调策略;最后建立了多运行模式切换规则,实现通过切换多种运行模式改变能量协调控制策略,使LVDCSUS在稳定运行状态下主动参与电力系统能量互动。仿真结果验证了LVDCSUS多运行模式控制策略的有效性和可靠性。