期刊文献+
共找到5,177篇文章
< 1 2 250 >
每页显示 20 50 100
Tomato Growth Height Prediction Method by Phenotypic Feature Extraction Using Multi-modal Data
1
作者 GONG Yu WANG Ling +3 位作者 ZHAO Rongqiang YOU Haibo ZHOU Mo LIU Jie 《智慧农业(中英文)》 2025年第1期97-110,共14页
[Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-base... [Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-based models that utilize either images data or environmental data.These methods fail to fully leverage multi-modal data to capture the diverse aspects of plant growth comprehensively.[Methods]To address this limitation,a two-stage phenotypic feature extraction(PFE)model based on deep learning algorithm of recurrent neural network(RNN)and long short-term memory(LSTM)was developed.The model integrated environment and plant information to provide a holistic understanding of the growth process,emploied phenotypic and temporal feature extractors to comprehensively capture both types of features,enabled a deeper understanding of the interaction between tomato plants and their environment,ultimately leading to highly accurate predictions of growth height.[Results and Discussions]The experimental results showed the model's ef‐fectiveness:When predicting the next two days based on the past five days,the PFE-based RNN and LSTM models achieved mean absolute percentage error(MAPE)of 0.81%and 0.40%,respectively,which were significantly lower than the 8.00%MAPE of the large language model(LLM)and 6.72%MAPE of the Transformer-based model.In longer-term predictions,the 10-day prediction for 4 days ahead and the 30-day prediction for 12 days ahead,the PFE-RNN model continued to outperform the other two baseline models,with MAPE of 2.66%and 14.05%,respectively.[Conclusions]The proposed method,which leverages phenotypic-temporal collaboration,shows great potential for intelligent,data-driven management of tomato cultivation,making it a promising approach for enhancing the efficiency and precision of smart tomato planting management. 展开更多
关键词 tomato growth prediction deep learning phenotypic feature extraction multi-modal data recurrent neural net‐work long short-term memory large language model
在线阅读 下载PDF
Multi-dimension and multi-modal rolling mill vibration prediction model based on multi-level network fusion
2
作者 CHEN Shu-zong LIU Yun-xiao +3 位作者 WANG Yun-long QIAN Cheng HUA Chang-chun SUN Jie 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3329-3348,共20页
Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction mode... Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction models do not consider the features contained in the data,resulting in limited improvement of model accuracy.To address these challenges,this paper proposes a multi-dimensional multi-modal cold rolling vibration time series prediction model(MDMMVPM)based on the deep fusion of multi-level networks.In the model,the long-term and short-term modal features of multi-dimensional data are considered,and the appropriate prediction algorithms are selected for different data features.Based on the established prediction model,the effects of tension and rolling force on mill vibration are analyzed.Taking the 5th stand of a cold mill in a steel mill as the research object,the innovative model is applied to predict the mill vibration for the first time.The experimental results show that the correlation coefficient(R^(2))of the model proposed in this paper is 92.5%,and the root-mean-square error(RMSE)is 0.0011,which significantly improves the modeling accuracy compared with the existing models.The proposed model is also suitable for the hot rolling process,which provides a new method for the prediction of strip rolling vibration. 展开更多
关键词 rolling mill vibration multi-dimension data multi-modal data convolutional neural network time series prediction
在线阅读 下载PDF
Test method of laser paint removal based on multi-modal feature fusion
3
作者 HUANG Hai-peng HAO Ben-tian +2 位作者 YE De-jun GAO Hao LI Liang 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第10期3385-3398,共14页
Laser cleaning is a highly nonlinear physical process for solving poor single-modal(e.g., acoustic or vision)detection performance and low inter-information utilization. In this study, a multi-modal feature fusion net... Laser cleaning is a highly nonlinear physical process for solving poor single-modal(e.g., acoustic or vision)detection performance and low inter-information utilization. In this study, a multi-modal feature fusion network model was constructed based on a laser paint removal experiment. The alignment of heterogeneous data under different modals was solved by combining the piecewise aggregate approximation and gramian angular field. Moreover, the attention mechanism was introduced to optimize the dual-path network and dense connection network, enabling the sampling characteristics to be extracted and integrated. Consequently, the multi-modal discriminant detection of laser paint removal was realized. According to the experimental results, the verification accuracy of the constructed model on the experimental dataset was 99.17%, which is 5.77% higher than the optimal single-modal detection results of the laser paint removal. The feature extraction network was optimized by the attention mechanism, and the model accuracy was increased by 3.3%. Results verify the improved classification performance of the constructed multi-modal feature fusion model in detecting laser paint removal, the effective integration of acoustic data and visual image data, and the accurate detection of laser paint removal. 展开更多
关键词 laser cleaning multi-modal fusion image processing deep learning
在线阅读 下载PDF
Optimal two-channel switching false data injection attacks against remote state estimation of the unmanned aerial vehicle cyber-physical system
4
作者 Juhong Zheng Dawei Liu +1 位作者 Jinxing Hua Xin Ning 《Defence Technology(防务技术)》 2025年第5期319-332,共14页
A security issue with multi-sensor unmanned aerial vehicle(UAV)cyber physical systems(CPS)from the viewpoint of a false data injection(FDI)attacker is investigated in this paper.The FDI attacker can employ attacks on ... A security issue with multi-sensor unmanned aerial vehicle(UAV)cyber physical systems(CPS)from the viewpoint of a false data injection(FDI)attacker is investigated in this paper.The FDI attacker can employ attacks on feedback and feed-forward channels simultaneously with limited resource.The attacker aims at degrading the UAV CPS's estimation performance to the max while keeping stealthiness characterized by the Kullback-Leibler(K-L)divergence.The attacker is resource limited which can only attack part of sensors,and the attacked sensor as well as specific forms of attack signals at each instant should be considered by the attacker.Also,the sensor selection principle is investigated with respect to time invariant attack covariances.Additionally,the optimal switching attack strategies in regard to time variant attack covariances are modeled as a multi-agent Markov decision process(MDP)with hybrid discrete-continuous action space.Then,the multi-agent MDP is solved by utilizing the deep Multi-agent parameterized Q-networks(MAPQN)method.Ultimately,a quadrotor near hover system is used to validate the effectiveness of the results in the simulation section. 展开更多
关键词 Unmanned aerial vehicle(UAV) Cyber physical systems(CPS) K-L divergence Multi-sensor fusion kalman filter Stealthy switching false data injection(FDI) ATTACKS
在线阅读 下载PDF
Research on Kalman-filter based multisensor data fusion 被引量:13
5
作者 Chen Yukun Si Xicai Li Zhigang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第3期497-502,共6页
Multisensor data fusion has played a significant role in diverse areas ranging from local robot guidance to global military theatre defense etc. Various multisensor data fusion methods have been extensively investigat... Multisensor data fusion has played a significant role in diverse areas ranging from local robot guidance to global military theatre defense etc. Various multisensor data fusion methods have been extensively investigated by researchers, of which Klaman filtering is one of the most important. Kalman filtering is the best-known recursive least mean-square algorithm to optimally estimate the unknown states of a dynamic system, which has found widespread application in many areas. The scope of the work is restricted to investigate the various data fusion and track fusion techniques based on the Kalman Filter methods, then a new method of state fusion is proposed. Finally the simulation results demonstrate the effectiveness of the introduced method. 展开更多
关键词 MULTISENSOR data fusion Kalman filter.
在线阅读 下载PDF
Signal classification method based on data mining formulti-mode radar 被引量:10
6
作者 qiang guo pulong nan jian wan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第5期1010-1017,共8页
For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to p... For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to process intercepted signals,which has a negative effect on signal classification. A classificationmethod based on spatial data mining is presented to address theabove challenge. Inspired by the idea of spatial data mining, theclassification method applies nuclear field to depicting the distributioninformation of pulse samples in feature space, and digs out thehidden cluster information by analyzing distribution characteristics.In addition, a membership-degree criterion to quantify the correlationamong all classes is established, which ensures classificationaccuracy of signal samples. Numerical experiments show that thepresented method can effectively prevent different working statesof multi-mode emitter from being classified as several emitters,and achieve higher classification accuracy. 展开更多
关键词 multi-mode radar signal classification data mining nuclear field cloud model membership.
在线阅读 下载PDF
Multi-mode process monitoring based on a novel weighted local standardization strategy and support vector data description 被引量:9
7
作者 赵付洲 宋冰 侍洪波 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第11期2896-2905,共10页
There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because the... There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because their presumptions are that sampled-data should obey the single Gaussian distribution or non-Gaussian distribution. In order to solve these problems, a novel weighted local standardization(WLS) strategy is proposed to standardize the multimodal data, which can eliminate the multi-mode characteristics of the collected data, and normalize them into unimodal data distribution. After detailed analysis of the raised data preprocessing strategy, a new algorithm using WLS strategy with support vector data description(SVDD) is put forward to apply for multi-mode monitoring process. Unlike the strategy of building multiple local models, the developed method only contains a model without the prior knowledge of multi-mode process. To demonstrate the proposed method's validity, it is applied to a numerical example and a Tennessee Eastman(TE) process. Finally, the simulation results show that the WLS strategy is very effective to standardize multimodal data, and the WLS-SVDD monitoring method has great advantages over the traditional SVDD and PCA combined with a local standardization strategy(LNS-PCA) in multi-mode process monitoring. 展开更多
关键词 multiple operating modes weighted local standardization support vector data description multi-mode monitoring
在线阅读 下载PDF
A Novel Multi-sensor Data Fusion Algorithm and Its Application to Diagnostics 被引量:2
8
作者 Li Xiong Xu Zongchang Dong Zhiming 《仪器仪表学报》 EI CAS CSCD 北大核心 2005年第z1期788-790,共3页
To Meet the requirements of multi-sensor data fusion in diagnosis for complex equipment systems,a novel, fuzzy similarity-based data fusion algorithm is given. Based on fuzzy set theory, it calculates the fuzzy simila... To Meet the requirements of multi-sensor data fusion in diagnosis for complex equipment systems,a novel, fuzzy similarity-based data fusion algorithm is given. Based on fuzzy set theory, it calculates the fuzzy similarity among a certain sensor's measurement values and the multiple sensor's objective prediction values to determine the importance weigh of each sensor,and realizes the multi-sensor diagnosis parameter data fusion.According to the principle, its application software is also designed. The applied example proves that the algorithm can give priority to the high-stability and high -reliability sensors and it is laconic ,feasible and efficient to real-time circumstance measure and data processing in engine diagnosis. 展开更多
关键词 DIAGNOSTICS MULTI-SENSOR data fusion ALGORITHM ENGINE
在线阅读 下载PDF
Online residual useful life prediction of large-size slewing bearings A data fusion method 被引量:2
9
作者 封杨 黄筱调 +1 位作者 洪荣晶 陈捷 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第1期114-126,共13页
To decrease breakdown time and improve machine operation reliability,accurate residual useful life(RUL) prediction has been playing a critical role in condition based monitoring.A data fusion method was proposed to ac... To decrease breakdown time and improve machine operation reliability,accurate residual useful life(RUL) prediction has been playing a critical role in condition based monitoring.A data fusion method was proposed to achieve online RUL prediction of slewing bearings,which consisted of a reliability based RUL prediction model and a data driven failure rate(FR) estimation model.Firstly,an RUL prediction model was developed based on modified Weibull distribution to build the relationship between RUL and FR.Secondly,principal component analysis(PCA) was introduced to process multi-dimensional life-cycle vibration signals,and continuous squared prediction error(CSPE) and its time-domain features were employed as equipment performance degradation features.Afterwards,an FR estimation model was established on basis of the degradation features and relevant FRs using simplified fuzzy adaptive resonance theory map(SFAM) neural network.Consequently,real-time FR of equipment can be obtained through FR estimation model,and then accurate RUL can be calculated through the RUL prediction model.Results of a slewing bearing life test show that CSPE is an effective indicator of performance degradation process of slewing bearings,and that by combining actual load condition and real-time monitored data,the calculation time is reduced by 87.3%and the accuracy is increased by 0.11%,which provides a potential for online RUL prediction of slewing bearings and other various machineries. 展开更多
关键词 slewing bearing life prediction Weibull distribution failure rate estimation data fusion
在线阅读 下载PDF
Data fusion of target characteristic in multistatic passive radar 被引量:3
10
作者 CAO Xiaomao YI Jianxin +2 位作者 GONG Ziping RAO Yunhua WAN Xianrong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第4期811-821,共11页
Radar cross section(RCS)is an important attribute of radar targets and has been widely used in automatic target recognition(ATR).In a passive radar,only the RCS multiplied by a coefficient is available due to the unkn... Radar cross section(RCS)is an important attribute of radar targets and has been widely used in automatic target recognition(ATR).In a passive radar,only the RCS multiplied by a coefficient is available due to the unknown transmitting parameters.For different transmitter-receiver(bistatic)pairs,the coefficients are different.Thus,the recovered RCS in different transmitter-receiver(bistatic)pairs cannot be fused for further use.In this paper,we propose a quantity named quasi-echo-power(QEP)as well as a method for eliminating differences of this quantity among different transmitter-receiver(bistatic)pairs.The QEP is defined as the target echo power after being compensated for distance and pattern propagation factor.The proposed method estimates the station difference coefficients(SDCs)of transmitter-receiver(bistatic)pairs relative to the reference transmitter-receiver(bistatic)pair first.Then,it compensates the QEP and gets the compensated QEP.The compensated QEP possesses a linear relationship with the target RCS.Statistical analyses on the simulated and real-life QEP data show that the proposed method can effectively estimate the SDC between different stations,and the compensated QEP from different receiving stations has the same distribution characteristics for the same target. 展开更多
关键词 data fusion multistatic passive radar radar cross section(RCS) target characteristic
在线阅读 下载PDF
Three dimensional passive underwater target motion analysis using correlated data fusion
11
作者 HU Youfeng, JIAO Bingli (Department of Electrics, Peking University, Beijing 100871, China) 《声学技术》 CSCD 2004年第S1期43-48,共6页
In this paper a new method of passive underwater TMA (target motion analysis) using data fusion is presented. The findings of this research are based on an understanding that there is a powerful sonar system that cons... In this paper a new method of passive underwater TMA (target motion analysis) using data fusion is presented. The findings of this research are based on an understanding that there is a powerful sonar system that consists of many types of sonar but with one own-ship, and that different target parameter measurements can be obtained simultaneously. For the analysis 3 data measurements, passive bearing, elevation and multipath time-delay, are used, which are divided into two groups: a group with estimates of two preliminary target parameter obtained by dealing with each group measurement independently, and a group where correlated estimates are sent to a fusion center where the correlation between two data groups are considered so that the passive underwater TMA is realized. Simulation results show that curves of parameter estimation errors obtained by using the data fusion have fast convergence and the estimation accuracy is noticeably improved. The TMA algorithm presented is verified and is of practical significance because it is easy to be realized in one ship. 展开更多
关键词 PASSIVE localization TARGET motion analysis (TMA) data fusion
在线阅读 下载PDF
Data Fusion Method for Manufacturing Measurement
12
作者 GU Li-chen, ZHANG You-yun, QUO Da-mou (School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期266-,共1页
A data fusion method of online multisensors is prop os ed in this paper based on artificial neuron. First, the dynamic data fusion mode l on artificial neuron is built. Then the calibration of data fusion is discusse ... A data fusion method of online multisensors is prop os ed in this paper based on artificial neuron. First, the dynamic data fusion mode l on artificial neuron is built. Then the calibration of data fusion is discusse d with self-adaptive weighing technique. Finally performance of the method is d emonstrated by an online vibration measurement case. The results show that the f used data are more stable, sensitive, accurate, reliable than that of single sen sor data. 展开更多
关键词 multisensor measures artificial neuron data fus ion fusion system calibration
在线阅读 下载PDF
A Modified Multi-data Fusion Method Based on D-S Theory 被引量:1
13
作者 姚景顺 杨世兴 《Defence Technology(防务技术)》 SCIE EI CAS 2008年第4期278-280,共3页
The D-S evidential reasoning algorithm is invalid when the evidence is completely contradicted. Therefore,a modified algorithm is proposed based on the elemental correlation and the influence of elemental weights in t... The D-S evidential reasoning algorithm is invalid when the evidence is completely contradicted. Therefore,a modified algorithm is proposed based on the elemental correlation and the influence of elemental weights in the evidence. The modified algorithm is more powerful ability to rectify errors and less computational complexity in the circumstance of multi-evidence fusion processing than those of the D-S evidential reasoning algorithm. 展开更多
关键词 信息处理 D-S推理 计算机 证据
在线阅读 下载PDF
BEV感知学习在自动驾驶中的应用综述 被引量:2
14
作者 黄德启 黄海峰 +1 位作者 黄德意 刘振航 《计算机工程与应用》 北大核心 2025年第6期1-21,共21页
自动驾驶感知模块中作为采集输入的传感器种类不断发展,要使多模态数据统一地表征出来变得愈加困难。BEV感知学习在自动驾驶感知任务模块中可以使多模态数据统一融合到一个特征空间,相比于其他感知学习模型拥有更好的发展潜力。从研究... 自动驾驶感知模块中作为采集输入的传感器种类不断发展,要使多模态数据统一地表征出来变得愈加困难。BEV感知学习在自动驾驶感知任务模块中可以使多模态数据统一融合到一个特征空间,相比于其他感知学习模型拥有更好的发展潜力。从研究意义、空间部署、准备工作、算法发展及评价指标五个方面总结了BEV感知模型具有良好发展潜力的原因。BEV感知模型从框架角度概括为四个系列:Lift-Splat-Lss系列、IPM逆透视转换、MLP视图转换及Transformer视图转换;从输入数据概括为两类:第一类是纯图像特征的输入包括单目摄像头输入和多摄像头输入,第二类在融合数据输入中不仅是简单的点云数据和图像特征的数据融合,还包括了以点云数据为引导或监督的知识蒸馏融合和以引导切片方式去划分高度段的融合。概述了多目标追踪、地图分割、车道线检测及3D目标检测四种自动驾驶任务在BEV感知模型当中的应用,并总结了目前BEV感知学习四个系列框架的缺点。 展开更多
关键词 BEV感知学习 视图转换 多模态数据融合 多目标追踪 地图分割 车道线检测及3D目标检测
在线阅读 下载PDF
面向动态混合数据的多粒度增量特征选择算法 被引量:1
15
作者 王锋 姚珍 梁吉业 《软件学报》 北大核心 2025年第3期1186-1201,共16页
在大数据时代,样本规模以及维数的动态更新和变化极大地增加了计算负担,在这些动态数据中,大多的数据样本并不以单一的数据取值形式存在,而是同时包含符号型数据和数值型数据的混合型数据.为此,学者们提出了许多关于混合数据的特征选择... 在大数据时代,样本规模以及维数的动态更新和变化极大地增加了计算负担,在这些动态数据中,大多的数据样本并不以单一的数据取值形式存在,而是同时包含符号型数据和数值型数据的混合型数据.为此,学者们提出了许多关于混合数据的特征选择算法,但现有的算法大多只适用静态数据或者小规模的增量数据,无法处理大规模动态变化的数据,尤其是数据分布不断变化的大规模增量数据集.针对这一局限性,通过分析动态数据中粒空间以及粒结构的变化和更新,基于信息融合机制,提出了一种面向动态混合数据的多粒度增量特征选择算法.该算法重点讨论了动态混合数据中的粒空间构建机制、多数据粒结构的动态更新机制以及面向数据分布变化信息融合机制.最后,通过与其他算法在UCI数据集上的实验结果进行对比,进一步验证了所提算法的可行性和高效性. 展开更多
关键词 动态混合数据 数据分布变化 多粒度计算 信息融合
在线阅读 下载PDF
SDENet:基于多尺度注意力质量感知的合成缺陷数据评价网络 被引量:2
16
作者 卢洋 陈林慧 +1 位作者 姜晓恒 徐明亮 《图学学报》 北大核心 2025年第1期94-103,共10页
通过对数据扩增方式合成的缺陷数据进行质量评估,有助于实现缺陷数据高质量扩充,进而缓解缺陷数据不足导致的检测模型性能不佳问题。针对现有质量评价算法在评估合成缺陷数据质量时更关注数据的失真特性而忽略了对数据缺陷属性考量的问... 通过对数据扩增方式合成的缺陷数据进行质量评估,有助于实现缺陷数据高质量扩充,进而缓解缺陷数据不足导致的检测模型性能不佳问题。针对现有质量评价算法在评估合成缺陷数据质量时更关注数据的失真特性而忽略了对数据缺陷属性考量的问题,提出一种基于注意力特征增强(AFE)和多尺度注意力质量感知(MAQP)的模型SDENet,综合考虑数据的失真特性和缺陷属性进行质量评价。首先,AFE通过双分支池化操作提高模型对不同尺寸、位置缺陷的泛化能力,并结合注意力机制增强模型对特征的表达。其次,MAQP对AFE增强后的特征进行向量化与融合处理,以更好地感知合成缺陷数据质量。最后,对融合后的特征进行质量评估,得到最终的评估分数。在构建的合成道路裂缝缺陷数据集上进行实验,结果表明,SDENet模型在RMSE,RMAE,PLCC和SROCC指标上均取得最优结果,比次优模型依次提升10.7%,5.0%,1.8%和1.8%,验证了模型的有效性。在失真数据集TID2013上,SDENet模型也取得较有竞争的结果,在PLCC和SROCC指标上依次达到0.902和0.876。 展开更多
关键词 注意力机制 特征增强 特征融合 合成缺陷数据 质量评价
在线阅读 下载PDF
数字技术赋能新型电力系统安全韧性提升的策略研究 被引量:5
17
作者 陈晓红 张高南 +4 位作者 张乘 陈姣龙 关健 刘泽洪 刘昭成 《中国工程科学》 北大核心 2025年第1期168-179,共12页
构建新型电力系统是落实能源安全战略和“双碳”目标的重要举措,提升安全韧性是新型电力系统安全稳定发展的核心要义,亟需数字技术发挥关键的赋能作用。本文分析了新型电力系统安全韧性的内涵及特征,从极端事件频发、系统结构复杂、多... 构建新型电力系统是落实能源安全战略和“双碳”目标的重要举措,提升安全韧性是新型电力系统安全稳定发展的核心要义,亟需数字技术发挥关键的赋能作用。本文分析了新型电力系统安全韧性的内涵及特征,从极端事件频发、系统结构复杂、多能协调冲突等方面梳理了新型电力系统安全韧性提升面临的挑战;阐述了数字技术对新型电力系统安全韧性提升的赋能作用,凝练了数字技术赋能新型电力系统安全韧性提升存在的主要问题,进一步提出了数字技术赋能新型电力系统安全韧性提升的关键技术体系,涵盖基于人工智能的多模态数据融合技术、基于云-边协同的智能态势感知与预警技术、基于大数据分析的多能协同优化调控技术、基于数字孪生的灾后应急决策技术。注重气候韧性重大工程顶层设计、加强“数字+电力”关键技术研发、建设数据基础设施并完善质量保障机制、优化电力行业复合型人才梯队建设等策略运用,可为新型电力系统建设发展提供理论支撑。 展开更多
关键词 新型电力系统 能源安全 安全韧性 数字技术 多模态数据融合 智能态势感知
在线阅读 下载PDF
融合梯度预测和无参注意力的高效地震去噪Transformer 被引量:1
18
作者 高磊 乔昊炜 +2 位作者 梁东升 闵帆 杨梅 《计算机科学与探索》 北大核心 2025年第5期1342-1352,共11页
压制随机噪声能够有效提升地震数据的信噪比(SNR)。近年来,基于卷积神经网络(CNN)的深度学习方法在地震数据去噪领域展现出显著性能。然而,CNN中的卷积操作由于感受野的限制通常只能捕获局部信息而不能建立全局信息的长距离连接,可能会... 压制随机噪声能够有效提升地震数据的信噪比(SNR)。近年来,基于卷积神经网络(CNN)的深度学习方法在地震数据去噪领域展现出显著性能。然而,CNN中的卷积操作由于感受野的限制通常只能捕获局部信息而不能建立全局信息的长距离连接,可能会导致细节信息的丢失。针对地震数据去噪问题,提出了一种融合梯度预测和无参注意力的高效Transformer模型(ETGP)。引入多头“转置”注意力来代替传统的多头注意力,它能在通道间计算注意力来表示全局信息,缓解了传统多头注意力复杂度过高的问题。提出了无参注意力前馈神经网络,它能同时考虑空间和通道维度计算注意力权重,而不向网络增加参数。设计了梯度预测网络以提取边缘信息,并将信息自适应地添加到并行Transformer的输入中,从而获得高质量的地震数据。在合成数据和野外数据上进行了实验,并与经典和先进的去噪方法进行了比较。结果表明,ETGP去噪方法不仅能更有效地压制随机噪声,并且在弱信号保留和同相轴连续性方面具有显著优势。 展开更多
关键词 地震数据去噪 卷积神经网络 TRANSFORMER 注意力模块 梯度融合
在线阅读 下载PDF
上海三维空间地理数字底座构建关键技术及应用 被引量:2
19
作者 陈燕 金雯 顾建祥 《测绘通报》 北大核心 2025年第1期161-164,184,共5页
全面推进城市数字化转型是上海推进高质量发展的重要战略。超大城市的科学化、精细化、智能化治理迫切需要构建基于地理实体的、既能精准映射物理世界又能融合城市实时运行信息的三维空间地理数字底座。本文结合超大城市精细化治理与城... 全面推进城市数字化转型是上海推进高质量发展的重要战略。超大城市的科学化、精细化、智能化治理迫切需要构建基于地理实体的、既能精准映射物理世界又能融合城市实时运行信息的三维空间地理数字底座。本文结合超大城市精细化治理与城市数字化转型的需求,分析了传统测绘技术在空间地理信息采集、信息融合和应用的技术瓶颈与难点,并从全空间地理信息快速获取、多源信息精准融合和多场景智能应用3个方面提出了上海三维空间地理数字底座构建的途径,形成了超大城市数字化转型地理信息数据成果与服务新模式。 展开更多
关键词 三维空间地理数字底座 空-天-地协同 智能提取 全时空信息智能融合 地理实体
在线阅读 下载PDF
面向多金属结核资源评价的大数据挖掘与融合
20
作者 李维禄 高思宇 +3 位作者 杨锦坤 韩春花 韦广昊 孔敏 《吉林大学学报(地球科学版)》 北大核心 2025年第1期340-350,共11页
深海多金属结核资源的预测评价已走向数据科学范式,急需开展深层次找矿-示矿大数据挖掘与融合。通过分析讨论深海矿产资源评价的研究进展,以及大数据分析在矿产资源评价领域的应用,探索了面向多金属结核资源评价的大数据挖掘与融合技术... 深海多金属结核资源的预测评价已走向数据科学范式,急需开展深层次找矿-示矿大数据挖掘与融合。通过分析讨论深海矿产资源评价的研究进展,以及大数据分析在矿产资源评价领域的应用,探索了面向多金属结核资源评价的大数据挖掘与融合技术方法,提出了多金属结核资源地质模型知识谱系分析、多源异构资源-环境数据特征信息挖掘、基于大数据空间决策分析的融合集成,以及多金属结核资源评价对比验证等关键技术流程。大数据挖掘与融合技术方法创新性分析常规/非常规资源评价数据及其与矿床的相关关系,构建符合地质约束的大数据空间决策支持推理模型,实现多源异构资源评价信息的特征提取和融合集成,为深海矿产资源评价提供了基于大数据分析的技术解决途径。大数据挖掘与融合技术研究可提高深海矿产资源评价的精度和效率,对深海资源-环境等数据的高效利用、新多金属结核矿区的勘探评价以及其他深海矿种的预测评价具有重要的理论价值和实践意义。 展开更多
关键词 多金属结核 资源评价 深海矿产 大数据 数据挖掘 数据融合
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部