期刊文献+
共找到1,292篇文章
< 1 2 65 >
每页显示 20 50 100
基于Trans-Attention的飞行区航空器监视数据融合方法
1
作者 王兴隆 尹昊 丁俊峰 《北京航空航天大学学报》 北大核心 2025年第4期1215-1223,共9页
针对飞行区航空器单一监视源存在监视精度低、位置跳变的问题,提出一种基于Transformer和注意力机制的航空器监视数据融合方法。利用Transformer的编码器结构分别对各监视源数据进行特征提取,通过注意力机制对不同监视源赋予权重值,经... 针对飞行区航空器单一监视源存在监视精度低、位置跳变的问题,提出一种基于Transformer和注意力机制的航空器监视数据融合方法。利用Transformer的编码器结构分别对各监视源数据进行特征提取,通过注意力机制对不同监视源赋予权重值,经过全连接网络进行回归计算,获得最终的融合结果。选取场面监视雷达(SMR)和广播式自动相关监视(ADS-B)系统的监视数据作为融合源,多点定位(MLAT)数据作为真实标签,实验结果表明:所提方法有效降低了单一监视源的监视误差,且融合效果优于基于注意力机制的长短期记忆网络、循环神经网络和扩展卡尔曼滤波融合方法,平均绝对误差分别提升了2.81%、16.73%和35.80%。 展开更多
关键词 数据融合 TRANSFORMER 注意力机制 场面监视雷达 广播式自动相关监视
在线阅读 下载PDF
基于Attention-BiTCN的网络入侵检测方法 被引量:12
2
作者 孙红哲 王坚 +1 位作者 王鹏 安雨龙 《信息网络安全》 CSCD 北大核心 2024年第2期309-318,共10页
为解决网络入侵检测领域多分类准确率不高的问题,文章根据网络流量数据具有时序特征的特点,提出一种基于注意力机制和双向时间卷积神经网络(BiDirectional Temporal Convolutional Network,BiTCN)的网络入侵检测模型。首先,该模型对数... 为解决网络入侵检测领域多分类准确率不高的问题,文章根据网络流量数据具有时序特征的特点,提出一种基于注意力机制和双向时间卷积神经网络(BiDirectional Temporal Convolutional Network,BiTCN)的网络入侵检测模型。首先,该模型对数据集进行独热编码和归一化处置等预处理,解决网络流量数据离散性强和标度不统一的问题;其次,将预处理好的数据经双向滑窗法生成双向序列,并同步输入Attention-Bi TCN模型中;然后,提取双向时序特征并通过加性方式融合,得到时序信息被增强后的融合特征;最后,使用Softmax函数对融合特征进行多种攻击行为检测识别。文章所提模型在NSL-KDD和UNSW-NB15数据集上进行实验验证,多分类准确率分别达到99.70%和84.07%,优于传统网络入侵检测算法,且比其他深度学习模型在检测性能上有显著提升。 展开更多
关键词 入侵检测 注意力机制 BiTCN 双向滑窗法 融合特征
在线阅读 下载PDF
基于MCFFN-Attention的高光谱图像分类 被引量:3
3
作者 程文娟 陈文强 《计算机工程与应用》 CSCD 北大核心 2020年第24期201-206,共6页
针对高光谱图像高维度的特性和样本数量少的局限性,提出了一个多尺度跨层特征融合注意力机制(MCFFN-Attention)的方法。对高光谱图像进行PCA降维,然后以3D CNN为基础,将中心像素和其相邻像素作为整体输入到网络中,对不同卷积层得到的特... 针对高光谱图像高维度的特性和样本数量少的局限性,提出了一个多尺度跨层特征融合注意力机制(MCFFN-Attention)的方法。对高光谱图像进行PCA降维,然后以3D CNN为基础,将中心像素和其相邻像素作为整体输入到网络中,对不同卷积层得到的特征进行融合。同时对融合的低层特征进行空间注意力机制处理,对融合的高层特征进行通道注意力机制处理,分配给它们不同的权重来优化特征图。在印第安松树和帕维亚大学数据集上进行实验,结果表明此方法相对于CNN、3D CNN和M3D CNN方法,分类精度得到了提升。 展开更多
关键词 高光谱图像分类 多尺度 特征融合 注意力机制
在线阅读 下载PDF
基于LSTM-Attention与CNN混合模型的文本分类方法 被引量:35
4
作者 滕金保 孔韦韦 +1 位作者 田乔鑫 王照乾 《计算机工程与应用》 CSCD 北大核心 2021年第14期126-133,共8页
针对传统长短时记忆网络(LongShort-TermMemory,LSTM)和卷积神经网络(ConvolutionNeuralNetwork,CNN)在提取特征时无法体现每个词语在文本中重要程度的问题,提出一种基于LSTM-Attention与CNN混合模型的文本分类方法。使用CNN提取文本局... 针对传统长短时记忆网络(LongShort-TermMemory,LSTM)和卷积神经网络(ConvolutionNeuralNetwork,CNN)在提取特征时无法体现每个词语在文本中重要程度的问题,提出一种基于LSTM-Attention与CNN混合模型的文本分类方法。使用CNN提取文本局部信息,进而整合出全文语义;用LSTM提取文本上下文特征,在LSTM之后加入注意力机制(Attention)提取输出信息的注意力分值;将LSTM-Attention的输出与CNN的输出进行融合,实现了有效提取文本特征的基础上将注意力集中在重要的词语上。在三个公开数据集上的实验结果表明,提出的模型相较于LSTM、CNN及其改进模型效果更好,可以有效提高文本分类的效果。 展开更多
关键词 文本分类 长短时记忆网络(LSTM) 注意力机制 卷积神经网络(CNN) 特征融合
在线阅读 下载PDF
基于GLSTM和Attention的中文事件要素提取 被引量:5
5
作者 曹渝昆 孙涛 《计算机工程与应用》 CSCD 北大核心 2022年第6期157-163,共7页
事件信息抽取是信息抽取任务中的一种,旨在识别并提出一个事件的触发词和元素。由于容易受到数据稀疏的影响,事件要素的抽取是中文事件抽取任务中的一个难点,研究的重点在于特征工程的构建。中文语法相较英文要复杂许多,所以捕获英文文... 事件信息抽取是信息抽取任务中的一种,旨在识别并提出一个事件的触发词和元素。由于容易受到数据稀疏的影响,事件要素的抽取是中文事件抽取任务中的一个难点,研究的重点在于特征工程的构建。中文语法相较英文要复杂许多,所以捕获英文文本特征的方法在中文任务中效果并不明显,而目前常用的神经网络模型仅考虑了上下文信息,不能兼顾词法和句法特征。因此针对中文的词法和句法特点,构建一种结合分组长短期记忆网络(grouped long-short term memory,GLSTM)和Attention的中文事件要素抽取方法 AGCEE(attention and GLSTM based Chinese event extraction),通过Attention机制融合词特征和句子特征,采用GLSTM捕获句子的上下文信息,并通过条件随机场(conditional random fields,CRF)进行事件信息抽取,最后在公开数据集上进行实验以验证模型的有效性。 展开更多
关键词 事件要素抽取 注意力机制 融合特征 分组长短期记忆网络(GLSTM)
在线阅读 下载PDF
基于注意力机制和特征融合的井下轻量级人员检测方法 被引量:3
6
作者 王帅 杨伟 +2 位作者 李宇翔 吴佳奇 杨维 《煤炭科学技术》 北大核心 2025年第4期383-392,共10页
煤矿井下环境复杂,安全隐患较多,人员检测是保障煤矿安全生产和建设智慧矿山的重要内容。常用的检测算法不仅参数量大,对设备算力要求高,而且在煤矿低照度环境下的应用效果不理想。针对上述问题,基于YOLOv5提出一种用于煤矿井下的轻量... 煤矿井下环境复杂,安全隐患较多,人员检测是保障煤矿安全生产和建设智慧矿山的重要内容。常用的检测算法不仅参数量大,对设备算力要求高,而且在煤矿低照度环境下的应用效果不理想。针对上述问题,基于YOLOv5提出一种用于煤矿井下的轻量级人员检测方法YOLOv5-CWG。首先,在骨干网络中嵌入坐标注意力机制(Coordinate Attention)自适应的调整特征图中每个通道的权重,增强特征的表达能力,提高模型在低照度、粉尘影响严重以及对比度低的不利条件下对待检测人员目标的关注度,更精确地定位和识别人员目标。其次,通过加权多尺度特征融合模块(Weighted multiscale feature fusion moule)引入可学习的权重赋予特征层不同的关注度,使网络有效融合浅层位置特征和高层语义信息,增强模型的信息提取能力,更好地区分目标区域和背景噪声,从而提高模型的抗干扰能力。增加1个P2层的检测头,提升较小目标的检测和定位精度。引入SIoU损失函数代替原损失函数加快模型收敛。最后,引入Ghost模块优化骨干网络,可以在不损失模型性能的前提下降低模型的参数量,提高检测速度,使得模型更容易部署在资源受限的设备上。结果表明,提出的YOLOv5-CWG算法在煤矿井下人员检测数据集(UMPDD)上的mAP达到了97.5%,相较于YOLOv5s提高了7.3%,计算量减少了27.6%,FPS提高了6.3。所提算法显著提高了煤矿井下人员检测精度,有效解决了亮度低和光照不均引起的人员检测困难问题。 展开更多
关键词 人员检测 YOLOv5 注意力机制 轻量化 特征融合
在线阅读 下载PDF
多尺度特征提取与融合的红外图像增强算法 被引量:6
7
作者 李牧 张一朗 柯熙政 《红外与激光工程》 北大核心 2025年第2期240-253,共14页
针对传统的特征融合算法多从单一的尺度上抽取图像的特征,并且在红外图像亮度增强过程中可能导致局部特征信息的丢失与退化而引起红外图像细节分辨率不高的问题,提出了多尺度特征提取与融合的红外图像增强算法,主要由多尺度自适应特征... 针对传统的特征融合算法多从单一的尺度上抽取图像的特征,并且在红外图像亮度增强过程中可能导致局部特征信息的丢失与退化而引起红外图像细节分辨率不高的问题,提出了多尺度特征提取与融合的红外图像增强算法,主要由多尺度自适应特征提取模块、亮度增强迭代函数以及特征融合和图像重建模块构成。首先,提出的多尺度自适应特征提取融合模块保存和融合了来自不同卷积层特征的多尺度信息;然后,改进的亮度增强迭代函数使用了融合特征作为逐像素参数,用于红外图像亮度增强;最后,通过提出的特征融合和图像重建模块,增强了特征在网络中的传播能力,并保持了局部信息的完整性。实验结果表明:多尺度特征提取与融合的红外图像增强算法与其它表现较好的网络相比,峰值信噪比、余弦相似度以及信息熵分别提高了3.7%、1.3%、1.6%。且在测试数据集上根据引用的火灾隐患检测算法判断是否存在火灾隐患进行早期火灾检测,其准确率为97.86%,说明了提出的多尺度特征提取与融合的红外图像增强算法的有效性与可行性。 展开更多
关键词 红外图像 图像增强 深度学习 特征融合 注意力机制
在线阅读 下载PDF
基于自适应特征增强和融合的舰载机着舰拉制状态识别 被引量:1
8
作者 王可 刘奕阳 +3 位作者 杨杰 鲁爱国 李哲 徐明亮 《上海交通大学学报》 北大核心 2025年第2期274-282,共9页
拉制状态识别能辅助着舰信号官及时准确地形成后续指挥决策,是舰载机着舰引导的重要环节.提出一种基于自适应特征增强和融合的拉制状态识别方法,包含基于注意力机制的特征增强模块,通过分割特征图、串联空间域和通道域增强视觉表征能力... 拉制状态识别能辅助着舰信号官及时准确地形成后续指挥决策,是舰载机着舰引导的重要环节.提出一种基于自适应特征增强和融合的拉制状态识别方法,包含基于注意力机制的特征增强模块,通过分割特征图、串联空间域和通道域增强视觉表征能力;利用多尺度特征融合模块,将高分辨率浅层特征与语义信息丰富的深层特征进行融合,充分利用上下文语义信息.基于所提方法,设计基于可穿戴增强现实设备的着舰拉制状态识别原型系统;构建着舰作业虚实融合数据集以评估方法性能.结果表明,所提算法综合性能优于基线算法,能满足拉制状态识别的应用需求. 展开更多
关键词 舰载机 阻拦着舰 特征融合 注意力机制 状态识别
在线阅读 下载PDF
基于多尺度卷积神经网络和双注意力机制的V2G充电桩开关管开路故障信息融合诊断 被引量:2
9
作者 徐玉珍 邹中华 +3 位作者 刘宇龙 曾梓洋 文云 金涛 《中国电机工程学报》 北大核心 2025年第8期2992-3002,I0012,共12页
随着电动汽车的普及,充电基础设施需求急剧上升,迫切需要对充电桩进行维护和故障诊断。为有效利用不同尺度下的充电桩故障信号特征,该文提出一种基于多尺度卷积神经网络和双注意力机制的V2G(vehicle-to-grid)充电桩开关管开路故障信息... 随着电动汽车的普及,充电基础设施需求急剧上升,迫切需要对充电桩进行维护和故障诊断。为有效利用不同尺度下的充电桩故障信号特征,该文提出一种基于多尺度卷积神经网络和双注意力机制的V2G(vehicle-to-grid)充电桩开关管开路故障信息融合诊断方法。该方法基于卷积神经网络,引入自注意力机制突出故障信号中的重要特征。同时,使用最大池化层和平均池化层处理故障信号,提供不同尺度的互补信息;此外,引入通道注意力机制关注不同通道特征,可提高模型性能;最后,采用Softmax分类器进行分类和识别。仿真结果表明,该方法在多个方面优于其他对比算法,包括收敛速度、抑制过拟合以及诊断准确率等,并且表现出卓越的抗噪性能,能够有效应对充电桩故障信号中的噪声。在实际测试中,该方法实现了开关管开路故障位置的准确定位,其准确率达96.67%。结果为充电桩开关管开路故障的诊断提供了可行的解决方案。 展开更多
关键词 充电桩 故障诊断 信息融合 深度学习 注意力机制
在线阅读 下载PDF
SDENet:基于多尺度注意力质量感知的合成缺陷数据评价网络 被引量:2
10
作者 卢洋 陈林慧 +1 位作者 姜晓恒 徐明亮 《图学学报》 北大核心 2025年第1期94-103,共10页
通过对数据扩增方式合成的缺陷数据进行质量评估,有助于实现缺陷数据高质量扩充,进而缓解缺陷数据不足导致的检测模型性能不佳问题。针对现有质量评价算法在评估合成缺陷数据质量时更关注数据的失真特性而忽略了对数据缺陷属性考量的问... 通过对数据扩增方式合成的缺陷数据进行质量评估,有助于实现缺陷数据高质量扩充,进而缓解缺陷数据不足导致的检测模型性能不佳问题。针对现有质量评价算法在评估合成缺陷数据质量时更关注数据的失真特性而忽略了对数据缺陷属性考量的问题,提出一种基于注意力特征增强(AFE)和多尺度注意力质量感知(MAQP)的模型SDENet,综合考虑数据的失真特性和缺陷属性进行质量评价。首先,AFE通过双分支池化操作提高模型对不同尺寸、位置缺陷的泛化能力,并结合注意力机制增强模型对特征的表达。其次,MAQP对AFE增强后的特征进行向量化与融合处理,以更好地感知合成缺陷数据质量。最后,对融合后的特征进行质量评估,得到最终的评估分数。在构建的合成道路裂缝缺陷数据集上进行实验,结果表明,SDENet模型在RMSE,RMAE,PLCC和SROCC指标上均取得最优结果,比次优模型依次提升10.7%,5.0%,1.8%和1.8%,验证了模型的有效性。在失真数据集TID2013上,SDENet模型也取得较有竞争的结果,在PLCC和SROCC指标上依次达到0.902和0.876。 展开更多
关键词 注意力机制 特征增强 特征融合 合成缺陷数据 质量评价
在线阅读 下载PDF
MC-Res2UNet网络在盐体识别中的应用 被引量:1
11
作者 王新 张傲 +1 位作者 张薇 陈同俊 《石油地球物理勘探》 北大核心 2025年第1期21-29,共9页
精确识别埋藏在地表下的盐体对于石油和天然气勘探有重大意义。传统的语义分割算法依然存在对盐体的识别精度较低、边缘识别效果较差、识别效率低等问题。文中提出一种基于MC-Res2UNet网络的盐体识别方法,该网络整体架构由U-Net网络改... 精确识别埋藏在地表下的盐体对于石油和天然气勘探有重大意义。传统的语义分割算法依然存在对盐体的识别精度较低、边缘识别效果较差、识别效率低等问题。文中提出一种基于MC-Res2UNet网络的盐体识别方法,该网络整体架构由U-Net网络改进。首先,使用Res2Net网络作为编码器提取盐体特征信息;然后,在解码层中的卷积之后引入CBAM注意力模块重新分配盐体空间信息和通道信息,抑制不重要的信息;最后,利用多尺度特征融合模块融合空间信息和语义信息,提高盐体识别精度。将文中提出的MC-Res2UNet模型用于TGS盐体数据集进行验证,像素准确率可达到96.6%,交并比可达到86.8%,优于传统的DeepLabV3+、DANet等语义分割方法,对地下盐体有更好的识别效果。 展开更多
关键词 盐体识别 U-Net 多尺度特征融合 注意力机制
在线阅读 下载PDF
基于GAN和多尺度空间注意力的多模态医学图像融合 被引量:3
12
作者 林予松 李孟娅 +1 位作者 李英豪 赵哲 《郑州大学学报(工学版)》 CAS 北大核心 2025年第1期1-8,共8页
针对多模态医学图像融合过程中多尺度特征和纹理细节信息丢失的问题,提出一种基于生成对抗网络和多尺度空间注意力的图像融合算法。首先,生成器采用自编码器结构,分别利用编码器和解码器对输入图像进行特征提取、融合和重建,生成融合图... 针对多模态医学图像融合过程中多尺度特征和纹理细节信息丢失的问题,提出一种基于生成对抗网络和多尺度空间注意力的图像融合算法。首先,生成器采用自编码器结构,分别利用编码器和解码器对输入图像进行特征提取、融合和重建,生成融合图像;其次,整个对抗网络框架采用双鉴别器结构,使得生成器生成的融合图像同时保留多个模态图像的显著特征;最后,构建一种多尺度空间注意力作为编码器进行特征提取的基本模块,利用多尺度结构充分捕获并保留源图像的多尺度特征,并且引入空间注意力更好地保留源图像的结构和细节信息。全脑图谱数据库上的实验结果表明:所提算法生成的融合图像不仅纹理细节更为丰富,有助于人类视觉观察,而且在3种不同类型的医学图像融合任务上平均梯度、峰值信噪比、互信息、视觉信息保真度等客观评价指标的平均值分别达到0.3023、20.7207、1.4414、0.6498,与其他先进的算法相比具有一定的优势。 展开更多
关键词 图像融合 多模态医学图像 生成对抗网络 特征金字塔 注意力机制
在线阅读 下载PDF
基于多模态信息融合的中文隐式情感分析 被引量:4
13
作者 张换香 李梦云 张景 《计算机工程与应用》 北大核心 2025年第2期179-190,共12页
隐式情感表达中缺乏显式情感词,给隐式情感分析带来一定的挑战。为有效解决此问题,借助外部信息是有效解决隐式情感分析的方法之一。与现有的主要借助单一文本信息的研究不同,提出一种融合多模态信息(包括语音和视频)的隐式情感分析方... 隐式情感表达中缺乏显式情感词,给隐式情感分析带来一定的挑战。为有效解决此问题,借助外部信息是有效解决隐式情感分析的方法之一。与现有的主要借助单一文本信息的研究不同,提出一种融合多模态信息(包括语音和视频)的隐式情感分析方法。通过从语音中提取音调、强度等声学特征,以及从视频中捕捉面部表情等视觉特征,辅助理解隐式情感。利用BiLSTM网络挖掘各单模态内部的上下文信息;结合多头互注意力机制分别捕捉与文本相关的语音和视觉特征,并通过迭代优化,减少非文本模态的低阶冗余信息。此外,通过设计以文本为中心的交叉注意融合模块,强化隐式文本特征表示,并处理模态间的异质性,增强隐式情感分析的综合性能。在CMUMOSI、CMU-MOSEI、MUMETA数据集上的实验结果表明,所提出的模型优于其他基线模型。这种针对隐式情感分析的多模态处理策略,充分利用语音和视觉外部知识,更全面、准确地捕捉隐式情感表达,有效提升了隐式情感分析的准确率。 展开更多
关键词 隐式情感分析 深度神经网络 多模态 注意力机制 特征融合
在线阅读 下载PDF
融合多尺度特征与注意力的小样本目标检测 被引量:1
14
作者 张英俊 甘望阳 +1 位作者 谢斌红 张睿 《小型微型计算机系统》 北大核心 2025年第3期689-696,共8页
针对现有小样本目标检测模型存在的尺度变化问题,支持集与查询集之间的外观变化、遮挡导致的误检与漏检问题,本文提出一种融合多尺度特征与注意力的小样本目标检测模型.首先,采用ResNet-101网络进行特征提取,同时引入ASPP(Atrous Spatia... 针对现有小样本目标检测模型存在的尺度变化问题,支持集与查询集之间的外观变化、遮挡导致的误检与漏检问题,本文提出一种融合多尺度特征与注意力的小样本目标检测模型.首先,采用ResNet-101网络进行特征提取,同时引入ASPP(Atrous Spatial Pyramid Pooling)模块获取不同的感受野,以捕获目标细节信息的多尺度特征.其次,采用Bi-FPN网络进行多尺度特征融合,获得更具代表性的查询特征与支持特征,有效缓解尺度变化问题.然后,利用提出的注意力引导特征增强模块对查询特征与支持特征进行自身关注,使得它们具有更好的判别能力,由此促进查询特征与支持特征的融合,以更好地应对外观变化和遮挡带来的挑战,从而缓解误检、漏检问题.最后,将分类头与边界框回归头进行解耦,分别对RPN网络基于细粒度查询特征产生的候选区域进行目标分类与目标定位.在PASCAL VOC与MS COCO数据集上的实验结果表明,所提模型的检测性能优于主流的小样本目标检测模型,相较于基线模型DCNet,mAP平均分别提升了3.5%与2.1%. 展开更多
关键词 小样本学习 元学习 目标检测 多尺度特征融合 注意力机制
在线阅读 下载PDF
基于特征交叉注意力机制融合的轴承故障诊断方法 被引量:1
15
作者 赵国超 刘崇德 +2 位作者 宋宇宁 金鑫 李伟华 《振动与冲击》 北大核心 2025年第12期228-237,共10页
为了解决轴承振动信号特征提取不充分导致故障诊断准确率低的问题,提出一种基于特征交叉注意力机制融合的轴承故障诊断方法,建立CNN-BiTCN-CA诊断模型。采用变分模态分解和快速傅里叶变换对原始信号进行重构,分别使用卷积神经网络(convo... 为了解决轴承振动信号特征提取不充分导致故障诊断准确率低的问题,提出一种基于特征交叉注意力机制融合的轴承故障诊断方法,建立CNN-BiTCN-CA诊断模型。采用变分模态分解和快速傅里叶变换对原始信号进行重构,分别使用卷积神经网络(convolutional neural network,CNN)和双向时间卷积网络(bidirectional temporal convolutional network,BiTCN)提取时频特征,通过交叉注意力机制(cross-attention mechanism,CA)融合时频特征的能力,充分提取原始信号故障特征,利用全连接层实现滚动轴承故障类型的精确诊断。试验研究表明:在含信噪比为9.32 dB、标准差为2.98的高斯白噪声的环境下,使用CNN-BiTCN-CA模型轴承故障分类准确率为99.88%,相较于使用CNN、BiTCN和结合自注意力机制的卷积神经网络(CNN with self-attention mechanism,CNN-SA)诊断轴承故障,准确率分别提升约22.79%、4.85%和4.19%;在引入信噪比为3.31 dB、标准差为5.96的高斯白噪声时,该模型仍然可以达到96.12%的诊断准确率。CNN-BiTCN-CA模型能够深入提取轴承信号中的故障特征,有效提高故障分类准确性。 展开更多
关键词 滚动轴承 故障诊断 双向时间卷积网络(BiTCN) 时频融合 交叉注意力机制(CA)
在线阅读 下载PDF
结合注意力特征融合的路面裂缝检测 被引量:2
16
作者 谢永华 厉涛 柏勇 《计算机工程与设计》 北大核心 2025年第1期307-313,共7页
为解决路面裂缝检测中裂缝漏检和定位不准的问题,提出一个结合注意力特征融合的可端到端训练的路面裂缝检测网络。基于Resnet-50结构设计,在特征融合部分添加注意力特征融合模块,通过注意力掩码学习,动态调整浅层特征与深层特征融合权重... 为解决路面裂缝检测中裂缝漏检和定位不准的问题,提出一个结合注意力特征融合的可端到端训练的路面裂缝检测网络。基于Resnet-50结构设计,在特征融合部分添加注意力特征融合模块,通过注意力掩码学习,动态调整浅层特征与深层特征融合权重,突出有用信息,解决裂缝漏检问题;在编码器部分,改进浅层特征与深层特征的选取方式,提升特征融合效果和检测精度。实验结果表明,该网络在各项指标上均优于其它对比网络,具有较高的检测精度。 展开更多
关键词 裂缝检测 深度学习 语义分割 卷积网络 注意力机制 特征融合 特征提取
在线阅读 下载PDF
基于融合卷积Transformer的航空发动机故障诊断 被引量:2
17
作者 赵洪利 杨佳强 《北京航空航天大学学报》 北大核心 2025年第4期1117-1126,共10页
航空发动机长期处于恶劣的气路环境下工作会面临腐蚀、侵蚀等问题,且故障参数特征不明显,因此,精准的航空发动机故障诊断方法对保证飞机安全运行具有重要意义。为提高预测准确性,提出了一种基于融合卷积Transformer的航空发动机故障诊... 航空发动机长期处于恶劣的气路环境下工作会面临腐蚀、侵蚀等问题,且故障参数特征不明显,因此,精准的航空发动机故障诊断方法对保证飞机安全运行具有重要意义。为提高预测准确性,提出了一种基于融合卷积Transformer的航空发动机故障诊断方法。利用自注意力机制提取有用特征,抑制冗余信息,并将最大池化层引入Transformer模型中,进一步降低模型内存消耗及参数量,缓解过拟合现象。采用基于GasTurb建模的涡扇发动机仿真数据集进行验证,结果与Transformer模型和反向传播(BP)神经网络、卷积神经网络(CNN)、循环神经网络(RNN)等传统深度学习模型相比,准确率分别提高了6.552%和28.117%、13.189%、10.29%,证明了所提方法的有效性,可为航空发动机故障诊断提供一定的参考。 展开更多
关键词 航空发动机 故障诊断 自注意力机制 融合卷积Transformer 深度神经网络
在线阅读 下载PDF
基于注意力机制的特征融合推荐模型 被引量:1
18
作者 马汉达 李腾飞 《计算机工程与科学》 北大核心 2025年第5期902-911,共10页
针对目前推荐系统难以获得特征信息,缺乏有效的方法来表示特征信息的权重的问题,提出了一种基于注意力机制与特征融合的推荐模型FFADeepCF_SPS。首先,针对特征表示不够充分的问题,使用因子分解机融合特征,将特征从一维扩展到高维,从而... 针对目前推荐系统难以获得特征信息,缺乏有效的方法来表示特征信息的权重的问题,提出了一种基于注意力机制与特征融合的推荐模型FFADeepCF_SPS。首先,针对特征表示不够充分的问题,使用因子分解机融合特征,将特征从一维扩展到高维,从而获得特征的低阶表示,然后使用深度神经网络学习高阶特征,并通过一个全连接层将2种特征组合起来,以获得所需的特征表示;其次,针对单头注意力机制过度倾斜权重的问题,使用将输入切分成多个单头分别计算其注意力权重的多头注意力机制,再经由线性变换将各结果进行拼接,获得最终的输出;最后,结合上述2点构建了基于注意力机制与特征融合的推荐模型。为了验证模型的有效性,在4个公开数据集上与基线模型GMF、DeepCF_SPS和CNN-BiLSTM进行了对比实验以及消融实验。实验结果表明,在不同规模的数据集上,所提模型与基线模型相比在MSE、RMSE、MAE评价指标上表现出的性能均更优。 展开更多
关键词 注意力机制 特征融合 推荐模型 评分预测
在线阅读 下载PDF
改进Faster R-CNN的钢材表面缺陷检测 被引量:1
19
作者 冷岳峰 刘正 +1 位作者 徐宝祎 李志轩 《机械科学与技术》 北大核心 2025年第1期75-83,共9页
钢材表面缺陷检测是工业生产中至关重要的一项检测工作,针对钢材表面缺陷检测中漏检以及对于细小缺陷检测精度不佳等问题,提出了一种改进Faster R-CNN算法。在FPN(Feature pyramid networks)与RPN(Region proposal network)之间引入特... 钢材表面缺陷检测是工业生产中至关重要的一项检测工作,针对钢材表面缺陷检测中漏检以及对于细小缺陷检测精度不佳等问题,提出了一种改进Faster R-CNN算法。在FPN(Feature pyramid networks)与RPN(Region proposal network)之间引入特征融合模块与轻量化通道注意力模块,增加模型对精细特征的捕捉能力。改进模型在NEU-DET数据集上的实验结果显示,最终mAP(Mean average precision,记为m_(AP))值为80.2%,比原始模型提高了12.6%,FPS提高了40.9%。该算法能够有效提升钢材表面缺陷的检测精度,为钢材表面缺陷自动检测提供参考。 展开更多
关键词 缺陷检测 特征融合 通道注意力机制 改进Faster R-CNN算法
在线阅读 下载PDF
基于全局残差注意力和门控特征融合的CNN-Transformer去雾算法 被引量:1
20
作者 李海燕 乔仁超 +1 位作者 李海江 陈泉 《东北大学学报(自然科学版)》 北大核心 2025年第1期26-34,共9页
为解决现有图像去雾算法因缺乏全局上下文信息、处理分布不均匀的雾时效果差且复用细节信息时引入噪声的缺陷,提出了基于全局残差注意力和门控特征融合的CNN-Transformer去雾算法.首先,引入全局残差注意力机制编码模块自适应地提取非均... 为解决现有图像去雾算法因缺乏全局上下文信息、处理分布不均匀的雾时效果差且复用细节信息时引入噪声的缺陷,提出了基于全局残差注意力和门控特征融合的CNN-Transformer去雾算法.首先,引入全局残差注意力机制编码模块自适应地提取非均匀雾区的细节特征,设计跨维度通道空间注意力优化信息权重.然后,提出全局建模Transformer模块加深编码器的特征提取过程,设计带有并行卷积的Swin Transformer捕捉特征之间的依赖关系.最后,设计门控特征融合解码模块复用图像重建所需的纹理信息,滤除不相关的雾噪声,提高去雾性能.在4个公开数据集上进行定性和定量实验,实验结果表明:所提算法能够有效地处理非均匀雾区域,重建纹理细腻且语义丰富的高保真无雾图像,其峰值信噪比和结构相似性指数都优于经典对比算法. 展开更多
关键词 图像去雾 全局残差注意力机制 CNN-Transformer架构 门控特征融合 图像重建
在线阅读 下载PDF
上一页 1 2 65 下一页 到第
使用帮助 返回顶部