The acoustical scattering cross section is usually employed to evaluate the scattering ability of the bubbles when they are excited by the incident acoustic waves. This parameter is strongly related to many important ...The acoustical scattering cross section is usually employed to evaluate the scattering ability of the bubbles when they are excited by the incident acoustic waves. This parameter is strongly related to many important applications of performance prediction for search sonar or underwater telemetry, acoustical oceanography, acoustic cavitation, volcanology, and medical and industrial ultrasound. In the present paper, both the analytical and numerical analysis results of the acoustical scattering cross section of a single bubble under multi-frequency excitation are obtained. The nonlinear characteristics(e.g.,harmonics, subharmonics, and ultraharmonics) of the scattering cross section curve under multi-frequency excitation are investigated compared with single-frequency excitation. The influence of several paramount parameters(e.g., bubble equilibrium radius, acoustic pressure amplitude, and acoustic frequencies) in the multi-frequency system on the predictions of scattering cross section is discussed. It is shown that the combination resonances become significant in the multi-frequency system when the acoustic power is big enough, and the acoustical scattering cross section is promoted significantly within a much broader range of bubble sizes and acoustic frequencies due to the generation of more resonances.展开更多
Local defected resonance(LDR)is a recently-developed non-destructive testing method,which identifies damage by detecting the vibrational response of the structural surface under the wideband ultrasonic excitation. The...Local defected resonance(LDR)is a recently-developed non-destructive testing method,which identifies damage by detecting the vibrational response of the structural surface under the wideband ultrasonic excitation. The concept of LDR is studied and applied for damage imaging of delamination in composite laminates. Aiming at the problem of poor anti-noise ability and inaccurate damage identification in traditional detection process,an LDR-based multi-frequency method is proposed. Experimental results show that the proposed method can realize the localization and imaging of delamination damage in composite materials.展开更多
Modulated high frequency (HF) heating of the ionosphere provides a feasible means of artificially generating ex- tremely low frequency (ELF)/very low frequency (VLF) whistler waves, which can leak into the inner...Modulated high frequency (HF) heating of the ionosphere provides a feasible means of artificially generating ex- tremely low frequency (ELF)/very low frequency (VLF) whistler waves, which can leak into the inner magnetosphere and contribute to resonant interactions with high energy electrons. Combining the ray tracing method and test particle simulations, we evaluate the effects of energetic electron resonant scattering driven by the discrete, multi-frequency arti- ficially generated ELF/VLF waves. The simulation results indicate a stochastic behavior of electrons and a linear profile of pitch angle and kinetic energy variations averaged over all test electrons. These features are similar to those associated with single-frequency waves. The computed local diffusion coefficients show that, although the momentum diffusion of relativistic electrons due to artificial ELF/VLF whistlers with a nominal amplitude of ~ 1 pT is minor, the pitch angle scattering can be notably efficient at low pitch angles near the loss cone, which supports the feasibility of artificial triggering of multi-frequency ELF/VLF whistler waves for the removal of high energy electrons from the magnetosphere. We also investigate the dependences of diffusion coefficients on the frequency interval (△f) of the discrete, multi-frequency waves. We find that there is a threshold value of Af for which the net diffusion coefficient of multi-frequency whistlers is inversely proportional to △f (proportional to the frequency components Nw) when △f is below the threshold value but it remains unchanged with increasing Af when △f is larger than the threshold value. This is explained as being due to the fact that the resonant scattering effect of broadband waves is the sum of the effects of each frequency in the 'effective frequency band'. Our results suggest that the modulation frequency of HF heating of the ionosphere can be appropriately selected with reasonable frequency intervals so that better performance of controlled precipitation of high energy electrons in the plasmasphere by artificial ELF/VLF whistler waves can be achieved.展开更多
This paper explores the multi-frequency independent channel interference alignment(MFC-IA) system of 3 channels and4 users,and single data stream transmit,i.e.(3×3,1)~4 system.We derive the analytic solution for(...This paper explores the multi-frequency independent channel interference alignment(MFC-IA) system of 3 channels and4 users,and single data stream transmit,i.e.(3×3,1)~4 system.We derive the analytic solution for(3×3,1)~4 MFC-IA system.Based on the analytic solution,an optimization problem is proposed aim at the optimal IA solution.Then based on such a math model,we propose a simulated annealing(SA) algorithm to search optimal IA solution.The simulation results show that the simulated annealing IA algorithm has a better sum rate performance than iterative maximize signal to interference plus noise ratio(Max-SINR) algorithm.This result can be extended to single data stream multi-antenna IA system with 3 antennas and4 users.展开更多
A new scheme which generates multi-frequency terahertz(THz)waves from planar waveguide by the optimized cascaded difference frequency generation(OCDFG)is proposed.A THz wave with frequencyω_(T1)is generated by the OC...A new scheme which generates multi-frequency terahertz(THz)waves from planar waveguide by the optimized cascaded difference frequency generation(OCDFG)is proposed.A THz wave with frequencyω_(T1)is generated by the OCDFG with two infrared pump waves,and simultaneously a series of cascaded optical waves with a frequency intervalω_(T1)is generated.The THz wave with a frequency of M-timesω_(T1)is generated by mixing the m-th-order and the(m+M)-th-order cascaded optical wave.The phase mismatch distributions of cascaded difference frequency generation(CDFG)are modulated by changing the thickness of planar waveguide step by step,thereby satisfying the phase-matching condition from first-order to high-order cascaded Stokes process step by step.As a result,the intensity of THz wave can be enhanced and modulated by controlling the cascading order of OCDFG.展开更多
Under submerged conditions, compared with traditional self-excited oscillating pulsed waterjets(SOPWs), annular fluid-enhanced self-excited oscillating pulsed waterjets(AFESOPWs) exhibit a higher surge pressure throug...Under submerged conditions, compared with traditional self-excited oscillating pulsed waterjets(SOPWs), annular fluid-enhanced self-excited oscillating pulsed waterjets(AFESOPWs) exhibit a higher surge pressure through self-priming. However, their pressure frequency and cavitation characteristics remain unclear, resulting in an inability to fully utilize resonance and cavitation erosion to break coal and rock. In this study, high-frequency pressure testing, high-speed photography, and large eddy simulation(LES) are used to investigate the distribution of the pressure frequency band, evolution law of the cavitation cloud, and its regulation mechanism of a continuous waterjet, SOPW, and AFESOPW. The results indicated that the excitation of the plunger pump, shearing layer vortex, and bubble collapse corresponded to the three high-amplitude frequency bands of the waterjet pressure. AFESOPWs have an additional self-priming frequency that can produce a larger amplitude under a synergistic effect with the second high-amplitude frequency band. A better cavitation effect was produced after self-priming the annulus fluid, and the shedding frequency of the cavitation clouds of the three types of waterjets was linearly related to the cavitation number. The peak pressure of the waterjet and cavitation erosion effect can be improved by modulating the waterjet pressure oscillation frequency and cavitation shedding frequency.展开更多
The effect of the mass ratio on the flow-induced vibration (FIV) of a flexible circular cylinder is experimentally investigated in a towing tank. A Tygon tube with outer and inner diameters of 7.9 mm and 4.8 mm, res...The effect of the mass ratio on the flow-induced vibration (FIV) of a flexible circular cylinder is experimentally investigated in a towing tank. A Tygon tube with outer and inner diameters of 7.9 mm and 4.8 mm, respectively, was employed for the study. The tube was connected to a carriage and towed from rest to a steady speed up to 1.6 m/s before slowing down to rest again over a distance of 1.6 m in still water. Reynolds number based on the cylinder's outer diameter was 800-13,000, and the reduced velocity (velocity normalized by the cylinder's natural frequency and outer diameter) spanned from 2 to 25. When connected, the cylinder was elongated from 420 mm to 460 mm under an axial pre-tension of 11 N. Based on the cylinder's elongated length, the aspect ratio (ratio of the cylinder's length to outer diameter) was calculated as 58. Three mass ratios (ratio of the cylinder's structural mass to displaced fluid mass, m*) of 0.7, 1.0, and 3.4 were determined by filling the cylinder's interior with air, water, and alloy powder (nickel-chromium-boron matrix alloy), respectively. An optical method was adopted for response measurements. Multi-frequency vibrations were observed in both in-line (IL) and cross-flow (CF) responses; at high Reynolds number, vibration modes up to the 3rd one were identified in the CF response. The mode transition was found to occur at a lower reduced velocity for the highest tested mass ratio. The vibration amplitude and frequency were quantified and expressed with respect to the reduced velocity. A significant reduced vibration amplitude was found in the IL response with increasing mass ratios, and only initial and upper branches existed in the IL and CF response amplitudes. The normalized response frequencies were revealed to linearly increase with respect to the reduced velocity, and slopes for linear relations were found to be identical for the three cases tested.展开更多
This paper introduces the characteristics of TD-SCDMA, and analyzes some networking schemes and methods of multifrequency. For the 5 MHz frequency bandwidth, a frequency planning scheme containing three frequencies is...This paper introduces the characteristics of TD-SCDMA, and analyzes some networking schemes and methods of multifrequency. For the 5 MHz frequency bandwidth, a frequency planning scheme containing three frequencies is examined, and a simulation model is built to validate the performance of this scheme. Finally, this paper analyzes the advantages and disadvantages of the scheme, and proposes some directions for the future study of networking planning.展开更多
The conversion-efficiency for second-harmonic(SH)in optical fibers is significantly limited by extremely weak second-order nonlinearity of fused silica,and pulse pump lasers with high peak power are widely employed.He...The conversion-efficiency for second-harmonic(SH)in optical fibers is significantly limited by extremely weak second-order nonlinearity of fused silica,and pulse pump lasers with high peak power are widely employed.Here,we propose a simple strategy to efficiently realize the broadband and continuous wave(CW)pumped SH,by transferring a crystalline GaSe coating onto a microfiber with phase-matching diameter.In the experiment,high efficiency up to 0.08%W-1mm-1 is reached for a C-band pump laser.The high enough efficiency not only guarantees SH at a single frequency pumped by a CW laser,but also multi-frequencies mixing supported by three CW light sources.Moreover,broadband SH spectrum is also achieved under the pump of a superluminescent light-emitting diode source with a 79.3 nm bandwidth.The proposed scheme provides a beneficial method to the enhancement of various nonlinear parameter processes,development of quasi-monochromatic or broadband CW light sources at new wavelength regions.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11674074)the Program for Changjiang Scholars and Innovative Research Team in University,China(Grant No.IRT1228)
文摘The acoustical scattering cross section is usually employed to evaluate the scattering ability of the bubbles when they are excited by the incident acoustic waves. This parameter is strongly related to many important applications of performance prediction for search sonar or underwater telemetry, acoustical oceanography, acoustic cavitation, volcanology, and medical and industrial ultrasound. In the present paper, both the analytical and numerical analysis results of the acoustical scattering cross section of a single bubble under multi-frequency excitation are obtained. The nonlinear characteristics(e.g.,harmonics, subharmonics, and ultraharmonics) of the scattering cross section curve under multi-frequency excitation are investigated compared with single-frequency excitation. The influence of several paramount parameters(e.g., bubble equilibrium radius, acoustic pressure amplitude, and acoustic frequencies) in the multi-frequency system on the predictions of scattering cross section is discussed. It is shown that the combination resonances become significant in the multi-frequency system when the acoustic power is big enough, and the acoustical scattering cross section is promoted significantly within a much broader range of bubble sizes and acoustic frequencies due to the generation of more resonances.
基金supported by the National Natural Science Foundation of China(Nos.51875227,51805261,51775267)the Natural Science Foundation of Jiangsu Province(Nos.BK20181286,BK20180430)the Aviation Science Fund(No.20161552014)
文摘Local defected resonance(LDR)is a recently-developed non-destructive testing method,which identifies damage by detecting the vibrational response of the structural surface under the wideband ultrasonic excitation. The concept of LDR is studied and applied for damage imaging of delamination in composite laminates. Aiming at the problem of poor anti-noise ability and inaccurate damage identification in traditional detection process,an LDR-based multi-frequency method is proposed. Experimental results show that the proposed method can realize the localization and imaging of delamination damage in composite materials.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.41204120 and 41304130)the Fundamental Research Funds for the Central Universities(Grant No.2042014kf0251)
文摘Modulated high frequency (HF) heating of the ionosphere provides a feasible means of artificially generating ex- tremely low frequency (ELF)/very low frequency (VLF) whistler waves, which can leak into the inner magnetosphere and contribute to resonant interactions with high energy electrons. Combining the ray tracing method and test particle simulations, we evaluate the effects of energetic electron resonant scattering driven by the discrete, multi-frequency arti- ficially generated ELF/VLF waves. The simulation results indicate a stochastic behavior of electrons and a linear profile of pitch angle and kinetic energy variations averaged over all test electrons. These features are similar to those associated with single-frequency waves. The computed local diffusion coefficients show that, although the momentum diffusion of relativistic electrons due to artificial ELF/VLF whistlers with a nominal amplitude of ~ 1 pT is minor, the pitch angle scattering can be notably efficient at low pitch angles near the loss cone, which supports the feasibility of artificial triggering of multi-frequency ELF/VLF whistler waves for the removal of high energy electrons from the magnetosphere. We also investigate the dependences of diffusion coefficients on the frequency interval (△f) of the discrete, multi-frequency waves. We find that there is a threshold value of Af for which the net diffusion coefficient of multi-frequency whistlers is inversely proportional to △f (proportional to the frequency components Nw) when △f is below the threshold value but it remains unchanged with increasing Af when △f is larger than the threshold value. This is explained as being due to the fact that the resonant scattering effect of broadband waves is the sum of the effects of each frequency in the 'effective frequency band'. Our results suggest that the modulation frequency of HF heating of the ionosphere can be appropriately selected with reasonable frequency intervals so that better performance of controlled precipitation of high energy electrons in the plasmasphere by artificial ELF/VLF whistler waves can be achieved.
基金supported by the 863 Program of China under Grant No.2015AA01A703the Fundamental Research Funds for the Central Universities under Grant No.2014ZD03-02+1 种基金the National Natural Science Foundation of China(NSFC,No.61171104,61571055)fund of State Key Laboratory of Millimeter Wave(SKL of MMW,No.K201501)
文摘This paper explores the multi-frequency independent channel interference alignment(MFC-IA) system of 3 channels and4 users,and single data stream transmit,i.e.(3×3,1)~4 system.We derive the analytic solution for(3×3,1)~4 MFC-IA system.Based on the analytic solution,an optimization problem is proposed aim at the optimal IA solution.Then based on such a math model,we propose a simulated annealing(SA) algorithm to search optimal IA solution.The simulation results show that the simulated annealing IA algorithm has a better sum rate performance than iterative maximize signal to interference plus noise ratio(Max-SINR) algorithm.This result can be extended to single data stream multi-antenna IA system with 3 antennas and4 users.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61735010,31671580,and 61601183)the Natural Science Foundation of Henan Province,China(Grant No.162300410190)the Program for Science&Technology Innovation Talents in Universities of Henan Province,China(Grant No.18HASTIT023)。
文摘A new scheme which generates multi-frequency terahertz(THz)waves from planar waveguide by the optimized cascaded difference frequency generation(OCDFG)is proposed.A THz wave with frequencyω_(T1)is generated by the OCDFG with two infrared pump waves,and simultaneously a series of cascaded optical waves with a frequency intervalω_(T1)is generated.The THz wave with a frequency of M-timesω_(T1)is generated by mixing the m-th-order and the(m+M)-th-order cascaded optical wave.The phase mismatch distributions of cascaded difference frequency generation(CDFG)are modulated by changing the thickness of planar waveguide step by step,thereby satisfying the phase-matching condition from first-order to high-order cascaded Stokes process step by step.As a result,the intensity of THz wave can be enhanced and modulated by controlling the cascading order of OCDFG.
基金supported by the program for National Natural Science Foundation of China (Nos. 52174173, 52274188, and 52104190)the Joint Funds of the National Natural Science Foundation of China (No. U24A2091)+1 种基金The Natural Science Foundation of Henan Polytechnic University (No. B2021-2)Double FirstClass Initiative of Safety and Energy Engineering (Henan Polytechnic University) (Nos. AQ20240703 and AQ20230304)。
文摘Under submerged conditions, compared with traditional self-excited oscillating pulsed waterjets(SOPWs), annular fluid-enhanced self-excited oscillating pulsed waterjets(AFESOPWs) exhibit a higher surge pressure through self-priming. However, their pressure frequency and cavitation characteristics remain unclear, resulting in an inability to fully utilize resonance and cavitation erosion to break coal and rock. In this study, high-frequency pressure testing, high-speed photography, and large eddy simulation(LES) are used to investigate the distribution of the pressure frequency band, evolution law of the cavitation cloud, and its regulation mechanism of a continuous waterjet, SOPW, and AFESOPW. The results indicated that the excitation of the plunger pump, shearing layer vortex, and bubble collapse corresponded to the three high-amplitude frequency bands of the waterjet pressure. AFESOPWs have an additional self-priming frequency that can produce a larger amplitude under a synergistic effect with the second high-amplitude frequency band. A better cavitation effect was produced after self-priming the annulus fluid, and the shedding frequency of the cavitation clouds of the three types of waterjets was linearly related to the cavitation number. The peak pressure of the waterjet and cavitation erosion effect can be improved by modulating the waterjet pressure oscillation frequency and cavitation shedding frequency.
文摘The effect of the mass ratio on the flow-induced vibration (FIV) of a flexible circular cylinder is experimentally investigated in a towing tank. A Tygon tube with outer and inner diameters of 7.9 mm and 4.8 mm, respectively, was employed for the study. The tube was connected to a carriage and towed from rest to a steady speed up to 1.6 m/s before slowing down to rest again over a distance of 1.6 m in still water. Reynolds number based on the cylinder's outer diameter was 800-13,000, and the reduced velocity (velocity normalized by the cylinder's natural frequency and outer diameter) spanned from 2 to 25. When connected, the cylinder was elongated from 420 mm to 460 mm under an axial pre-tension of 11 N. Based on the cylinder's elongated length, the aspect ratio (ratio of the cylinder's length to outer diameter) was calculated as 58. Three mass ratios (ratio of the cylinder's structural mass to displaced fluid mass, m*) of 0.7, 1.0, and 3.4 were determined by filling the cylinder's interior with air, water, and alloy powder (nickel-chromium-boron matrix alloy), respectively. An optical method was adopted for response measurements. Multi-frequency vibrations were observed in both in-line (IL) and cross-flow (CF) responses; at high Reynolds number, vibration modes up to the 3rd one were identified in the CF response. The mode transition was found to occur at a lower reduced velocity for the highest tested mass ratio. The vibration amplitude and frequency were quantified and expressed with respect to the reduced velocity. A significant reduced vibration amplitude was found in the IL response with increasing mass ratios, and only initial and upper branches existed in the IL and CF response amplitudes. The normalized response frequencies were revealed to linearly increase with respect to the reduced velocity, and slopes for linear relations were found to be identical for the three cases tested.
文摘This paper introduces the characteristics of TD-SCDMA, and analyzes some networking schemes and methods of multifrequency. For the 5 MHz frequency bandwidth, a frequency planning scheme containing three frequencies is examined, and a simulation model is built to validate the performance of this scheme. Finally, this paper analyzes the advantages and disadvantages of the scheme, and proposes some directions for the future study of networking planning.
基金supports from National Natural Science Foundation of China(No.61975166,11634010)Key Research and Development Program(No.2017YFA0303800).
文摘The conversion-efficiency for second-harmonic(SH)in optical fibers is significantly limited by extremely weak second-order nonlinearity of fused silica,and pulse pump lasers with high peak power are widely employed.Here,we propose a simple strategy to efficiently realize the broadband and continuous wave(CW)pumped SH,by transferring a crystalline GaSe coating onto a microfiber with phase-matching diameter.In the experiment,high efficiency up to 0.08%W-1mm-1 is reached for a C-band pump laser.The high enough efficiency not only guarantees SH at a single frequency pumped by a CW laser,but also multi-frequencies mixing supported by three CW light sources.Moreover,broadband SH spectrum is also achieved under the pump of a superluminescent light-emitting diode source with a 79.3 nm bandwidth.The proposed scheme provides a beneficial method to the enhancement of various nonlinear parameter processes,development of quasi-monochromatic or broadband CW light sources at new wavelength regions.