The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper stud...The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper studied the shell-side heat and mass transfer characteristics of vapor-liquid two-phase mixed refrigerants in an SWHE by combining a multi-component model in FLUENT software with a customized multicomponent mass transfer model. Besides, the mathematical model under the sloshing condition was obtained through mathematical derivation, and the corresponding UDF code was loaded into FLUENT as the momentum source term. The results under the sloshing conditions were compared with the relevant parameters under the steady-state condition. The shell-side heat and mass transfer characteristics of the SWHE were investigated by adjusting the component ratio and other working conditions. It was found that the sloshing conditions enhance the heat transfer performance and sometimes have insignificant effects. The sloshing condition is beneficial to reduce the flow resistance. The comprehensive performance of multi-component refrigerants has been improved and the improvement is more significant under sloshing conditions, considering both the heat transfer and pressure drop.These results will provide theoretical support for the research and design of multi-component heat and mass transfer enhancement of LNG SWHE under ocean sloshing conditions.展开更多
A multi-component system has the long fixed maintenance time, so the opportunistic maintenance policy is adopted to put preventive replacement and corrective replacement together, so that the long fixed maintenance ti...A multi-component system has the long fixed maintenance time, so the opportunistic maintenance policy is adopted to put preventive replacement and corrective replacement together, so that the long fixed maintenance time can be shared by more than one component, and the system availability can be improved. Then, the generation characteristics of the random failure time are researched based on the replacement maintenance and the minima[ maintenance. Furthermore, by choosing the opportunistic replacement ages of each component as opti- mized variables, a simulation algorithm based on an opportunistic maintenance policy is designed to maximize the total availability. Finally, the simulation result shows the validity of the algorithm by an example.展开更多
A general scheme for generating a multi-component integrable equation hierarchy is proposed. A simple 3M- dimensional loop algebra ~X is produced. By taking advantage of ~X a new isospectral problem is established and...A general scheme for generating a multi-component integrable equation hierarchy is proposed. A simple 3M- dimensional loop algebra ~X is produced. By taking advantage of ~X a new isospectral problem is established and then by making use of the Tu scheme the multi-component Dirac equation hierarchy is obtained. Finally, an expanding loop algebra ~FM of the loop algebra ~X is presented. Based on the ~FM, the multi-component integrable coupling system of the multi-component Dirac equation hierarchy is investigated. The method in this paper can be applied to other nonlinear evolution equation hierarchies.展开更多
The tight-fractured gas reservoir of the Upper Triassic Xujiahe Formation in the Western Sichuan Depression has low porosity and permeability. This study presents a DNN-based method for identifying gas-bearing strata ...The tight-fractured gas reservoir of the Upper Triassic Xujiahe Formation in the Western Sichuan Depression has low porosity and permeability. This study presents a DNN-based method for identifying gas-bearing strata in tight sandstone. First, multi-component composite seismic attributes are obtained.The strong nonlinear relationships between multi-component composite attributes and gas-bearing reservoirs can be constrained through a DNN. Therefore, we identify and predict the gas-bearing strata using a DNN. Then, sample data are fed into the DNN for training and testing. After optimized network parameters are determined by the performance curves and empirical formulas, the best deep learning gas-bearing prediction model is determined. The composite seismic attributes can then be fed into the model to extrapolate the hydrocarbon-bearing characteristics from known drilling areas to the entire region for predicting the gas reservoir distribution. Finally, we assess the proposed method in terms of the structure and fracture characteristics and predict favorable exploration areas for identifying gas reservoirs.展开更多
Elastic waves are affected by viscoelasticity during the propagation through the Earth,resulting in energy attenuation and phase distortion,in turn resulting in low seismic imaging accuracy.Therefore,viscoelasticity s...Elastic waves are affected by viscoelasticity during the propagation through the Earth,resulting in energy attenuation and phase distortion,in turn resulting in low seismic imaging accuracy.Therefore,viscoelasticity should be considered in seismic migration imaging.We propose a Q compensated multicomponent elastic Gaussian beam migration(Q-EGBM)method to(1)separate the elastic-wave data into longitudinal(P)and transverse(S)waves to perform PP-wave and PS-wave imaging;(2)recover the amplitude loss caused by attenuation;(3)correct phase distortions caused by dispersion;(4)improve the resolution of migration imaging.In this paper,to accomplish(2),(3),and(4),we derive complex-valued traveltimes in viscoelastic media.The results of numerical experiments using a simple five-layer model and a sophisticated BP gas model show that the method presented here has significant advantages in recovering energy decay and correcting phase distortion,as well as significantly improving imaging resolution.展开更多
The segregation modes and characteristics of 1-6 mm multi-component lignite were studied in a microporous, vibrated, gas-fluidized bed of Φ110 mm ×400 mm. The effects of particle density and size, vibration freq...The segregation modes and characteristics of 1-6 mm multi-component lignite were studied in a microporous, vibrated, gas-fluidized bed of Φ110 mm ×400 mm. The effects of particle density and size, vibration frequency and amplitude, and gas velocity on these characteristics were considered. The average size, average density, size deviation coefficient, and density deviation coefficient were used to identify lignite size and density. The separation efficiency was adopted to evaluate the segregation performance,and the segregation mechanisms were explored. The results show that ε(size,max) of heterogeneous multisize-component lignite with K_(size) = 65% reaches 80% at f= 20 Hz, A = 5 mm, and N =(1,3). ε_(density,max) Of heterogeneous multi-density-component lignite with K_(density)= 25% reaches 50% at f = 15 Hz, A = 5 mm,and N =(1,1.5). The density segregations of 1-3 and 3-6 mm multi-component mixtures are remarkable,ε_(density,max)= 42% and 31% at f= 14 and 16 Hz, and A = 3 and 5 mm, respectively. The size segregation of 1-6 mm multi-component mixture is prominent and ε_(size,max)= 55% at f= 15 Hz, A = 5 mm. The mediumsized mixture with a narrow size distribution at low frequency is favorable for density segregation,and a mixture with a wider size distribution at high frequency is most favorable for size segregation.Precise control of gas flow and vibration as well as optimal design of the fluidized bed can improve the performance of segregation in the vibrated gas-fluidized bed.展开更多
A theoretical investigation on the propagation of positron-acoustic shock waves (PASWs) in an unmagnetized, collisionless, dense plasma (containing non-relativistic inertial cold positrons, non-relativistic or ultr...A theoretical investigation on the propagation of positron-acoustic shock waves (PASWs) in an unmagnetized, collisionless, dense plasma (containing non-relativistic inertial cold positrons, non-relativistic or ultra-relativistic degenerate electron and hot positron fluids and nondegenerate positively charged immobile ions) is carried out by employing the reductive perturbation method. The Burgers equation and its stationary shock wave solution are derived and numerically analyzed. It is observed that the relativistic effect (i.e., the presence of non/ultra- relativistic electrons and positrons) and the plasma particle number densities play vital roles in the propagation of PASWs. The implications of our results in space and interstellar compact objects including non-rotating white dwarfs, neutron stars, etc. are briefly discussed.展开更多
Fig.1 3D X-ray tomography reconstruction and element distribution in Ti,Mg and Al co-doped LiCoO2.3D spatial distributions of (a) Al,(b) Co and (c) Ti probed by fluorescence-yield scanning transmission X-ray microscop...Fig.1 3D X-ray tomography reconstruction and element distribution in Ti,Mg and Al co-doped LiCoO2.3D spatial distributions of (a) Al,(b) Co and (c) Ti probed by fluorescence-yield scanning transmission X-ray microscopy;elemental distributions of (d) Al,(e) Co and (f) Ti over the virtual x-z slice through the center of the particle;(g) identified and visualized subdomain formation Fig.2 (a) Comparison of cycling stabilities of Ti,Mg and Al co-doped LiCoO2 and pristine LiCoO2 half cells,charge-discharge profiles of (b) pristine LiCoO2 and (c) Ti,Mg and Al co-doped LiCoO2 half cells,(d) cycle stabilities of Ti,Mg and Al co-doped LiCoO2 and pristine LiCoO2 full batteries (graphite was used anode) and (e) discharge voltage of the full batteries and energy density of the both materials as a function of cycle number Layered lithium cobalt oxide (LiCoO2) with a theoretical capacity of 274 mAh·g^-1 has become a dominant cathode material for lithium-ion batteries of “3C” market (cellular phones,portable computers,camcorders)[1-2].Nevertheless,the actually attained capacity is merely about 140 mAh·g^-1 with a charge cut-off vol- tage of about 4.2 V (vs Li +/Li)[3].展开更多
An essential technology of carbon capture, utilization and storage-enhanced oil recovery (CCUS-EOR) for tight oil reservoirs is CO_(2) huff-puff followed by associated produced gas reinjection. In this paper, the effe...An essential technology of carbon capture, utilization and storage-enhanced oil recovery (CCUS-EOR) for tight oil reservoirs is CO_(2) huff-puff followed by associated produced gas reinjection. In this paper, the effects of multi-component gas on the properties and components of tight oil are studied. First, the core displacement experiments using the CH_(4)/CO_(2) multi-component gas are conducted to determine the oil displacement efficiency under different CO_(2) and CH_(4) ratios. Then, a viscometer and a liquid density balance are used to investigate the change characteristics of oil viscosity and density after multi-component gas displacement with different CO_(2) and CH_(4) ratios. In addition, a laboratory scale numerical model is established to validate the experimental results. Finally, a composition model of multi-stage fractured horizontal well in tight oil reservoir considering nano-confinement effects is established to investigate the effects of multi-component gas on the components of produced dead oil and formation crude oil. The experimental results show that the oil displacement efficiency of multi-component gas displacement is greater than that of single-component gas displacement. The CH_(4) decreases the viscosity and density of light oil, while CO_(2) decreases the viscosity but increases the density. And the numerical simulation results show that CO_(2) extracts more heavy components from the liquid phase into the vapor phase, while CH_(4) extracts more light components from the liquid phase into the vapor phase during cyclic gas injection. The multi-component gas can extract both the light components and the heavy components from oil, and the balanced production of each component can be achieved by using multi-component gas huff-puff.展开更多
A classical time-varying signal, the multi-component Chirp signal has been widely used and the ability to estimate its instantaneous frequency (IF) is very useful. But in noisy environments, it is hard to estimate t...A classical time-varying signal, the multi-component Chirp signal has been widely used and the ability to estimate its instantaneous frequency (IF) is very useful. But in noisy environments, it is hard to estimate the 1F of a multi-component Chirp signal accurately. Wigner distribution maxima (WDM) are usually utilized for this estimation. But in practice, estimation bias increases when some points deviate from the true IF in high noise environments. This paper presents a new method of multi-component Chirp signal 1F estimation named Wigner Viterbi fit (WVF), based on Wigner-Ville distribution (WVD) and the Viterbi algorithm. First, we transform the WVD of the Chirp signal into digital image, and apply the Viterbi algorithm to separate the components and estimate their IF. At last, we establish a linear model to fit the estimation results. Theoretical analysis and simulation results prove that this new method has high precision and better performance than WDM in high noise environments, and better suppression of interference and the edge effect. Compared with WDM, WVF can reduce the mean square error (MSE) by 50% when the signal to noise ration (SNR) is in the range of-15dB to -11dB. WVF is an effective and promising 1F estimation method.展开更多
A hydrodynamic approach is used to investigate a three-component magnetized plasma sheath which consists of electrons and two species of positive ions. Assuming a phase space of one-dimensional spatial coordinate syst...A hydrodynamic approach is used to investigate a three-component magnetized plasma sheath which consists of electrons and two species of positive ions. Assuming a phase space of one-dimensional spatial coordinate system and three-dimensional velocity coordinate system, the effect of different concentrations of positive ion species on some characteristics of the plasma sheath such as the velocity and density distribution of positive ion species and the electrostatic potential of this region is investigated. The calculated results show that the increase in the density ratio of positive ion species causes a decrease in both the ion velocities and the electrostatic potential of the sheath region. Also, it is shown that in the sheath region of a magnetized plasma consisting of only one positive ion species the bumps of the net density of charged particles disappears much faster. In addition, three-dimensional velocity of each positive ion species in the sheath region is plotted for different concentrations of positive ion species.展开更多
Transition metals like Au,Ag,and Cu have been reported to be quite active for CO_(2) reduction.In this study,we use density functional theory(DFT)calculation to investigate the electronic structure and catalytic perfo...Transition metals like Au,Ag,and Cu have been reported to be quite active for CO_(2) reduction.In this study,we use density functional theory(DFT)calculation to investigate the electronic structure and catalytic performance of Au,Ag,Cu and their alloys for CO_(2) reduction reaction(CO_(2)RR).Theoretical calculations identified the combination of Ag,Cu,and Au in a face-centered cubic(fcc)alloy as an outstanding electrocatalyst for CO_(2) reduction to CO,with Cu as the active site.The d-orbital projected density of state(PDOS)profile suggests that alloying alters the electronic structure of the Cu site,thereby affecting the Gibbs free energy change for the formation of*COOH intermediate(ΔG_(*COOH)).To demonstrate the theoretical prediction experimentally,we employ a top-down dealloying approach to synthesize a nanoporous structured AgCuAu alloy(NP-Ag_(5)Cu_(5)Au_(5)).Electrochemical experiments validate that the ternary alloy catalyst is clearly better than unary and binary catalysts,showing a Faradaic efficiency(FE)for CO over 90%across a broad potential range of 0.6 V,with a peak of approximately 96%at-0.573 V vs.RHE.This study underscores the potential of multi-component alloys in CO_(2)RR and establishes a theoretical basis for designing efficient catalysts for CO_(2) utilization.展开更多
Based on the production curves,changes in hydrocarbon composition and quantities over time,and production systems from key trial production wells in lacustrine shale oil areas in China,fine fraction cutting experiment...Based on the production curves,changes in hydrocarbon composition and quantities over time,and production systems from key trial production wells in lacustrine shale oil areas in China,fine fraction cutting experiments and molecular dynamics numerical simulations were conducted to investigate the effects of changes in shale oil composition on macroscopic fluidity.The concept of“component flow”for shale oil was proposed,and the formation mechanism and conditions of component flow were discussed.The research reveals findings in four aspects.First,a miscible state of light,medium and heavy hydrocarbons form within micropores/nanopores of underground shale according to similarity and intermiscibility principles,which make components with poor fluidity suspended as molecular aggregates in light and medium hydrocarbon solvents,such as heavy hydrocarbons,thereby decreasing shale oil viscosity and enhancing fluidity and outflows.Second,small-molecule aromatic hydrocarbons act as carriers for component flow,and the higher the content of gaseous and light hydrocarbons,the more conducive it is to inhibit the formation of larger aggregates of heavy components such as resin and asphalt,thus increasing their plastic deformation ability and bringing about better component flow efficiency.Third,higher formation temperatures reduce the viscosity of heavy hydrocarbon components,such as wax,thereby improving their fluidity.Fourth,preservation conditions,formation energy,and production system play important roles in controlling the content of light hydrocarbon components,outflow rate,and forming stable“component flow”,which are crucial factors for the optimal compatibility and maximum flow rate of multi-component hydrocarbons in shale oil.The component flow of underground shale oil is significant for improving single-well production and the cumulative ultimate recovery of shale oil.展开更多
To explore the composite process of B-CuO and B-Bi_(2)O_(3) two-component laminated sticks,obtain the corresponding sticks with good printing effect,and explore the energy release behavior.In this study,boron,copper o...To explore the composite process of B-CuO and B-Bi_(2)O_(3) two-component laminated sticks,obtain the corresponding sticks with good printing effect,and explore the energy release behavior.In this study,boron,copper oxide,and bismuth trioxide powders were dispersed in the dispersed phase (DMF) using F_(2602) as a binder,and the construction of two-component B-CuO,B-Bi_(2)O_(3),three-component microcomposite,and three-component macro-composite sticks were realized with the help of double nozzle direct ink writing (DIW) technique respectively.The resulting sticks were ignited by a nichrome wire energized with a direct current,and a high-speed camera system was used to record the combustion behavior of the sticks,mark the flame position,and calculate the rate of ignition.The results showed that the B-CuO stick burning rate (42.11 mm·s^(-1)) was much higher than that of B-Bi_(2)O_(3)(17.84 mm·s^(-1)).The formulation with the highest CuO content (ω_(CuO)=58.7%) in the microscale composite of the sticks also had the fastest burning rate of 60.59 mm·s^(-1),as the CuO content decreased (ω_(CuO)=43.5%,29.3%),its burning rate decreased to 34.78 mm·s^(-1),37.97 mm·s^(-1).The stick with the highest copper oxide content(ω_(CuO)=60%) also possessed the highest burning rate (48.84 mm·s^(-1)) in the macro-composite sticks,and the burning rates of the macro-composite sticks with component spacing of 0.1 mm,0.2 mm,and 0.5 mm were 43.34 mm·s^(-1),48.84 mm·s^(-1),and 40.76 mm·s^(-1).展开更多
A novel and efficient method for distinguishing between chiral diols and diphenols has been established through the use of^(19)F NMR spectroscopy.Central to this system's efficacy is a chiral amine,strategically m...A novel and efficient method for distinguishing between chiral diols and diphenols has been established through the use of^(19)F NMR spectroscopy.Central to this system's efficacy is a chiral amine,strategically modified with a CF_(3)group.This amine reacts in-situ with 2-formylphenylboronic acid to create a chiral^(19)F-labeled probe.This probe demonstrates discriminatory capabilities by interacting with hydroxy-containing analytes to form boronic esters.These esters produce distinct^(19)F NMR signals that vary according to their stereoconfiguration,facilitating accurate chiral differentiation.The method's resolution capacity was demonstrated by successfully identifying 12 distinct chiral analytes(six pairs of enantiomers)in complex mixtures,highlighting its extensive potential in diverse chiral analysis applications.展开更多
Rational design of electrocatalysts is important for a sustainable oxygen evolution reaction(OER).It is still a huge challenge to engineer active sites in multi-sizes and multi-components simultaneously.Here,a series ...Rational design of electrocatalysts is important for a sustainable oxygen evolution reaction(OER).It is still a huge challenge to engineer active sites in multi-sizes and multi-components simultaneously.Here,a series of CoxP nanoparticles(NPs)confined in an SiO2matrix(SiO2/CoxP)is designed and synthesized as OER electrocatalysts.The phosphorization of the hydrolyzed Co-phyllosilicate promotes the formation of ultrasmall and small Co2P and CoP.These are firmly confined in the SiO2matrix.The coupling of multi-size and multi-component CoxP catalysts can regulate reaction kinetics and electron transfer ability,enrich the active sites,and eventually promote the intrinsic OER activity.The SiO2matrix provides abundant porous structure and oxygen vacancies,and these facilitate the exposure of active sites and improve conductivity.Because of the synergy and interplay of multisized/component CoxP NPs and the porous SiO2matrix,the unique SiO2/CoxP heterostructure exhibits low overpotential(293 m V@10 mA cm-2),and robust stability(decay 12 mV after 5000 CV cycles,97.4%of initial current after 100 h chronoamperometric)for the OER process,exceeding many advanced metal phosphide electrocatalysts.This work provides a novel tactic to design low-cost,simple,and highly efficient OER electrocatalysts.展开更多
In the past 15 years,the shale gas revolution and large-scale commercial developments in the United States have driven the exploration and development of shale plays worldwide.Among many factors affecting shale gas ex...In the past 15 years,the shale gas revolution and large-scale commercial developments in the United States have driven the exploration and development of shale plays worldwide.Among many factors affecting shale gas exploration potential,the gas-bearing properties of shale(quantity,storage state,composition)and their controlling factors are the essential research attracting wide attention in the academic community.This paper reviews the research progress on the retention mechanism,influencing factors,and evaluation methods for resource potential of the shale gas system,and proposes further research directions.Sorption is the main mechanism of gas retention in organic-rich shales;the gas is mainly stored in nanopores of shale in free and sorption states.The presence of water and nonhydrocarbon gases in pores can complicate the process and mechanism of methane(CH4)sorption,and the related theoretical models still need further development.The in-situ gas content and gasbearing properties of shale are governed by the geological properties(organic matter abundance,kerogen type,thermal maturity,mineral composition,diagenesis),the properties of fluids in pores(water,CH_(4),non-hydrocarbon gases),and geological conditions(temperature,pressure,preservation conditions)of the shale itself.For a particular basin or block,it is still challenging to define the main controlling factors,screen favorable exploration areas,and locate sweet spots.Compared to marine shales with extensive research and exploration data,lacustrine and marine-continental transitional shales are a further expanding area of investigation.Various methods have been developed to quantitatively characterize the in-situ gas content of shales,but all these methods have their own limitations,and more in-depth studies are needed to accurately evaluate and predict the in-situ gas content of shales,especially shales at deep depth.展开更多
To achieve efficient polymer solar cells(PSCs)with full utilization of the whole spectrum,the multicomponent devices are of great importance to be deeply explored,especially for their capability of one-step fabricatio...To achieve efficient polymer solar cells(PSCs)with full utilization of the whole spectrum,the multicomponent devices are of great importance to be deeply explored,especially for their capability of one-step fabrication.However,the research about one same binary system simultaneously derivated various multi-component PSC is still very limited.Herein,we achieved the whole constructions from one binary host to different ternary systems and even the quaternary one.The ternary strategies with fullerene acceptor,PC_(71)BM,and non-fullerene acceptor,BT_(6)IC-BO-4Cl,as the third component,both boosted the device efficiencies of PBT4Cl-Bz:IT-4F binary system from about 9% to comparatively beyond 11%.Despite the comparable improvement of performance,there existed other similarities and differences in two ternary strategies.In detail,the isotropic carrier transport of PC_(71)BM which largely elevated the fill factor(FF)in the corresponding devices,while the strong absorption of BT_(6)IC-BO-4Cl enhanced the short current density(J_(SC))most.More interestingly,quaternary devices based on PBT4Cl-Bz:IT-4F:PC71 BM:BT_(6)IC-BO-4Cl could combine both advantages of fullerene and non-fullerene ternary strategies,further pumped the J_(SC) from 16.44 to the highest level of 19.66 mA cm^(-2) among all devices,eventually resulted in an optimized efficiency of 11.69%.It reveals that both fullerene and non-fullerene ternary strategies have their unique feature to elevate the device performance either by efficient isotropic carrier transport or better coverage of whole sunlight spectrum and easy tunable energy levels from organic materials.The key is how to integrate the two pathways in one system and provide a more competitive solution facing high-quality PSCs.展开更多
Adsorption and desorption of carbon dioxide, methane and other gases on coals has been investigated experimentally using representative Zhongliangshan coals. Gas adsorption is one of the major concerns for both CO2 se...Adsorption and desorption of carbon dioxide, methane and other gases on coals has been investigated experimentally using representative Zhongliangshan coals. Gas adsorption is one of the major concerns for both CO2 sequestration and methane recovery processes. The experiments were carried out using both single and multi-component mixtures at 25 ℃ and 30 ℃ with the highest pressure of 12 MPa. The coal was under moisture equilibrated conditions. This provides experimental data from which a predictive assessment of CO2 sequestration and/or methane recovery can be conducted. The results show that for pure gasses the CH4 adsorption capacity is higher than the N2 adsorption capacity but lower than the CO2 adsorption capacity. Injection of CO2 or other gases into the coal significantly affects CH4 desorption. This allows the enhancement of CH4 recovery from the coals, thus supplying more clean energy while sequestering significant amounts of CO2 thereby reducing the greenhouse effect from human beings.展开更多
In this paper, we study the Wigner function of coherent state of N components, especially two components and three components. This function consists of two terms: the Gaussian term and the interference term with the...In this paper, we study the Wigner function of coherent state of N components, especially two components and three components. This function consists of two terms: the Gaussian term and the interference term with the negativity. The first term comprises N Gaussian surfaces evenly centred on a circle of radius |β| = |α| with a separate angle of 2π/N, and the second term is composed of 1/2N(N - 1) Gaussian-cosine surfaces evenly centred in a circular region of radius |β| 〈 |α|. Here, a is the eigenvalue of the annihilation operator α, and β is a variable in some complex space in which the Wigner function is defined. We have proved that the essential condition to eliminate the negativity of the Wigner function is that the mean photon count of the coherent state is equal to that of the Glouber coherent state.展开更多
基金funded by the National Natural Science Foundation of China(No.51806236,No.51806239)the Fundamental Research Funds for the Central Universities(No.2015XKMS059)+1 种基金Shaanxi Postdoctoral Fund Project(No.2018BSHEDZZ56)Foundation of Key Laboratory of Thermo-Fluid Science and Engineering(Xi'an Jiaotong University),Ministry of Education(No.KLTFSE2017KF01)。
文摘The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper studied the shell-side heat and mass transfer characteristics of vapor-liquid two-phase mixed refrigerants in an SWHE by combining a multi-component model in FLUENT software with a customized multicomponent mass transfer model. Besides, the mathematical model under the sloshing condition was obtained through mathematical derivation, and the corresponding UDF code was loaded into FLUENT as the momentum source term. The results under the sloshing conditions were compared with the relevant parameters under the steady-state condition. The shell-side heat and mass transfer characteristics of the SWHE were investigated by adjusting the component ratio and other working conditions. It was found that the sloshing conditions enhance the heat transfer performance and sometimes have insignificant effects. The sloshing condition is beneficial to reduce the flow resistance. The comprehensive performance of multi-component refrigerants has been improved and the improvement is more significant under sloshing conditions, considering both the heat transfer and pressure drop.These results will provide theoretical support for the research and design of multi-component heat and mass transfer enhancement of LNG SWHE under ocean sloshing conditions.
文摘A multi-component system has the long fixed maintenance time, so the opportunistic maintenance policy is adopted to put preventive replacement and corrective replacement together, so that the long fixed maintenance time can be shared by more than one component, and the system availability can be improved. Then, the generation characteristics of the random failure time are researched based on the replacement maintenance and the minima[ maintenance. Furthermore, by choosing the opportunistic replacement ages of each component as opti- mized variables, a simulation algorithm based on an opportunistic maintenance policy is designed to maximize the total availability. Finally, the simulation result shows the validity of the algorithm by an example.
文摘A general scheme for generating a multi-component integrable equation hierarchy is proposed. A simple 3M- dimensional loop algebra ~X is produced. By taking advantage of ~X a new isospectral problem is established and then by making use of the Tu scheme the multi-component Dirac equation hierarchy is obtained. Finally, an expanding loop algebra ~FM of the loop algebra ~X is presented. Based on the ~FM, the multi-component integrable coupling system of the multi-component Dirac equation hierarchy is investigated. The method in this paper can be applied to other nonlinear evolution equation hierarchies.
基金funded by the Natural Science Foundation of Shandong Province (ZR202103050722)National Natural Science Foundation of China (41174098)。
文摘The tight-fractured gas reservoir of the Upper Triassic Xujiahe Formation in the Western Sichuan Depression has low porosity and permeability. This study presents a DNN-based method for identifying gas-bearing strata in tight sandstone. First, multi-component composite seismic attributes are obtained.The strong nonlinear relationships between multi-component composite attributes and gas-bearing reservoirs can be constrained through a DNN. Therefore, we identify and predict the gas-bearing strata using a DNN. Then, sample data are fed into the DNN for training and testing. After optimized network parameters are determined by the performance curves and empirical formulas, the best deep learning gas-bearing prediction model is determined. The composite seismic attributes can then be fed into the model to extrapolate the hydrocarbon-bearing characteristics from known drilling areas to the entire region for predicting the gas reservoir distribution. Finally, we assess the proposed method in terms of the structure and fracture characteristics and predict favorable exploration areas for identifying gas reservoirs.
文摘Elastic waves are affected by viscoelasticity during the propagation through the Earth,resulting in energy attenuation and phase distortion,in turn resulting in low seismic imaging accuracy.Therefore,viscoelasticity should be considered in seismic migration imaging.We propose a Q compensated multicomponent elastic Gaussian beam migration(Q-EGBM)method to(1)separate the elastic-wave data into longitudinal(P)and transverse(S)waves to perform PP-wave and PS-wave imaging;(2)recover the amplitude loss caused by attenuation;(3)correct phase distortions caused by dispersion;(4)improve the resolution of migration imaging.In this paper,to accomplish(2),(3),and(4),we derive complex-valued traveltimes in viscoelastic media.The results of numerical experiments using a simple five-layer model and a sophisticated BP gas model show that the method presented here has significant advantages in recovering energy decay and correcting phase distortion,as well as significantly improving imaging resolution.
基金the National Natural Science Foundation of China (Nos. 51774283, 51174203)the Major International (Regional) Joint Research Project of NSFC (No. 51620105001) for the financial supports
文摘The segregation modes and characteristics of 1-6 mm multi-component lignite were studied in a microporous, vibrated, gas-fluidized bed of Φ110 mm ×400 mm. The effects of particle density and size, vibration frequency and amplitude, and gas velocity on these characteristics were considered. The average size, average density, size deviation coefficient, and density deviation coefficient were used to identify lignite size and density. The separation efficiency was adopted to evaluate the segregation performance,and the segregation mechanisms were explored. The results show that ε(size,max) of heterogeneous multisize-component lignite with K_(size) = 65% reaches 80% at f= 20 Hz, A = 5 mm, and N =(1,3). ε_(density,max) Of heterogeneous multi-density-component lignite with K_(density)= 25% reaches 50% at f = 15 Hz, A = 5 mm,and N =(1,1.5). The density segregations of 1-3 and 3-6 mm multi-component mixtures are remarkable,ε_(density,max)= 42% and 31% at f= 14 and 16 Hz, and A = 3 and 5 mm, respectively. The size segregation of 1-6 mm multi-component mixture is prominent and ε_(size,max)= 55% at f= 15 Hz, A = 5 mm. The mediumsized mixture with a narrow size distribution at low frequency is favorable for density segregation,and a mixture with a wider size distribution at high frequency is most favorable for size segregation.Precise control of gas flow and vibration as well as optimal design of the fluidized bed can improve the performance of segregation in the vibrated gas-fluidized bed.
文摘A theoretical investigation on the propagation of positron-acoustic shock waves (PASWs) in an unmagnetized, collisionless, dense plasma (containing non-relativistic inertial cold positrons, non-relativistic or ultra-relativistic degenerate electron and hot positron fluids and nondegenerate positively charged immobile ions) is carried out by employing the reductive perturbation method. The Burgers equation and its stationary shock wave solution are derived and numerically analyzed. It is observed that the relativistic effect (i.e., the presence of non/ultra- relativistic electrons and positrons) and the plasma particle number densities play vital roles in the propagation of PASWs. The implications of our results in space and interstellar compact objects including non-rotating white dwarfs, neutron stars, etc. are briefly discussed.
文摘Fig.1 3D X-ray tomography reconstruction and element distribution in Ti,Mg and Al co-doped LiCoO2.3D spatial distributions of (a) Al,(b) Co and (c) Ti probed by fluorescence-yield scanning transmission X-ray microscopy;elemental distributions of (d) Al,(e) Co and (f) Ti over the virtual x-z slice through the center of the particle;(g) identified and visualized subdomain formation Fig.2 (a) Comparison of cycling stabilities of Ti,Mg and Al co-doped LiCoO2 and pristine LiCoO2 half cells,charge-discharge profiles of (b) pristine LiCoO2 and (c) Ti,Mg and Al co-doped LiCoO2 half cells,(d) cycle stabilities of Ti,Mg and Al co-doped LiCoO2 and pristine LiCoO2 full batteries (graphite was used anode) and (e) discharge voltage of the full batteries and energy density of the both materials as a function of cycle number Layered lithium cobalt oxide (LiCoO2) with a theoretical capacity of 274 mAh·g^-1 has become a dominant cathode material for lithium-ion batteries of “3C” market (cellular phones,portable computers,camcorders)[1-2].Nevertheless,the actually attained capacity is merely about 140 mAh·g^-1 with a charge cut-off vol- tage of about 4.2 V (vs Li +/Li)[3].
基金supported by the National Natural Science Foundation of China(No.52174038 and No.52004307)China Petroleum Science and Technology Project-major project-Research on tight oil-shale oil reservoir engineering methods and key technologies in Ordos Basin(ZLZX2020-02-04)Science Foundation of China University of Petroleum,Beijing(No.2462018YJRC015).
文摘An essential technology of carbon capture, utilization and storage-enhanced oil recovery (CCUS-EOR) for tight oil reservoirs is CO_(2) huff-puff followed by associated produced gas reinjection. In this paper, the effects of multi-component gas on the properties and components of tight oil are studied. First, the core displacement experiments using the CH_(4)/CO_(2) multi-component gas are conducted to determine the oil displacement efficiency under different CO_(2) and CH_(4) ratios. Then, a viscometer and a liquid density balance are used to investigate the change characteristics of oil viscosity and density after multi-component gas displacement with different CO_(2) and CH_(4) ratios. In addition, a laboratory scale numerical model is established to validate the experimental results. Finally, a composition model of multi-stage fractured horizontal well in tight oil reservoir considering nano-confinement effects is established to investigate the effects of multi-component gas on the components of produced dead oil and formation crude oil. The experimental results show that the oil displacement efficiency of multi-component gas displacement is greater than that of single-component gas displacement. The CH_(4) decreases the viscosity and density of light oil, while CO_(2) decreases the viscosity but increases the density. And the numerical simulation results show that CO_(2) extracts more heavy components from the liquid phase into the vapor phase, while CH_(4) extracts more light components from the liquid phase into the vapor phase during cyclic gas injection. The multi-component gas can extract both the light components and the heavy components from oil, and the balanced production of each component can be achieved by using multi-component gas huff-puff.
基金Supported by the National Natural Science Foundation of China under Grant No. 60572098.
文摘A classical time-varying signal, the multi-component Chirp signal has been widely used and the ability to estimate its instantaneous frequency (IF) is very useful. But in noisy environments, it is hard to estimate the 1F of a multi-component Chirp signal accurately. Wigner distribution maxima (WDM) are usually utilized for this estimation. But in practice, estimation bias increases when some points deviate from the true IF in high noise environments. This paper presents a new method of multi-component Chirp signal 1F estimation named Wigner Viterbi fit (WVF), based on Wigner-Ville distribution (WVD) and the Viterbi algorithm. First, we transform the WVD of the Chirp signal into digital image, and apply the Viterbi algorithm to separate the components and estimate their IF. At last, we establish a linear model to fit the estimation results. Theoretical analysis and simulation results prove that this new method has high precision and better performance than WDM in high noise environments, and better suppression of interference and the edge effect. Compared with WDM, WVF can reduce the mean square error (MSE) by 50% when the signal to noise ration (SNR) is in the range of-15dB to -11dB. WVF is an effective and promising 1F estimation method.
基金supported by the Research Council of the Shahaid Beheshti University,G.C.of Iran
文摘A hydrodynamic approach is used to investigate a three-component magnetized plasma sheath which consists of electrons and two species of positive ions. Assuming a phase space of one-dimensional spatial coordinate system and three-dimensional velocity coordinate system, the effect of different concentrations of positive ion species on some characteristics of the plasma sheath such as the velocity and density distribution of positive ion species and the electrostatic potential of this region is investigated. The calculated results show that the increase in the density ratio of positive ion species causes a decrease in both the ion velocities and the electrostatic potential of the sheath region. Also, it is shown that in the sheath region of a magnetized plasma consisting of only one positive ion species the bumps of the net density of charged particles disappears much faster. In addition, three-dimensional velocity of each positive ion species in the sheath region is plotted for different concentrations of positive ion species.
基金supported by Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application(No.ZDSYS20220527171407017)。
文摘Transition metals like Au,Ag,and Cu have been reported to be quite active for CO_(2) reduction.In this study,we use density functional theory(DFT)calculation to investigate the electronic structure and catalytic performance of Au,Ag,Cu and their alloys for CO_(2) reduction reaction(CO_(2)RR).Theoretical calculations identified the combination of Ag,Cu,and Au in a face-centered cubic(fcc)alloy as an outstanding electrocatalyst for CO_(2) reduction to CO,with Cu as the active site.The d-orbital projected density of state(PDOS)profile suggests that alloying alters the electronic structure of the Cu site,thereby affecting the Gibbs free energy change for the formation of*COOH intermediate(ΔG_(*COOH)).To demonstrate the theoretical prediction experimentally,we employ a top-down dealloying approach to synthesize a nanoporous structured AgCuAu alloy(NP-Ag_(5)Cu_(5)Au_(5)).Electrochemical experiments validate that the ternary alloy catalyst is clearly better than unary and binary catalysts,showing a Faradaic efficiency(FE)for CO over 90%across a broad potential range of 0.6 V,with a peak of approximately 96%at-0.573 V vs.RHE.This study underscores the potential of multi-component alloys in CO_(2)RR and establishes a theoretical basis for designing efficient catalysts for CO_(2) utilization.
基金Supported by the National Natural Science Foundation of China(U22B6004)Scientific Research and Technological Development Project of RIPED(2022yjcq03)Technology Research Project of PetroChina Changqing Oilfield Company(KJZX2023-01)。
文摘Based on the production curves,changes in hydrocarbon composition and quantities over time,and production systems from key trial production wells in lacustrine shale oil areas in China,fine fraction cutting experiments and molecular dynamics numerical simulations were conducted to investigate the effects of changes in shale oil composition on macroscopic fluidity.The concept of“component flow”for shale oil was proposed,and the formation mechanism and conditions of component flow were discussed.The research reveals findings in four aspects.First,a miscible state of light,medium and heavy hydrocarbons form within micropores/nanopores of underground shale according to similarity and intermiscibility principles,which make components with poor fluidity suspended as molecular aggregates in light and medium hydrocarbon solvents,such as heavy hydrocarbons,thereby decreasing shale oil viscosity and enhancing fluidity and outflows.Second,small-molecule aromatic hydrocarbons act as carriers for component flow,and the higher the content of gaseous and light hydrocarbons,the more conducive it is to inhibit the formation of larger aggregates of heavy components such as resin and asphalt,thus increasing their plastic deformation ability and bringing about better component flow efficiency.Third,higher formation temperatures reduce the viscosity of heavy hydrocarbon components,such as wax,thereby improving their fluidity.Fourth,preservation conditions,formation energy,and production system play important roles in controlling the content of light hydrocarbon components,outflow rate,and forming stable“component flow”,which are crucial factors for the optimal compatibility and maximum flow rate of multi-component hydrocarbons in shale oil.The component flow of underground shale oil is significant for improving single-well production and the cumulative ultimate recovery of shale oil.
基金supported by the Graduate Education Innovation Project of Shanxi Province(Grant No.2022Y650)the National Natural Science Foundation of China(Grant No.22275170)。
文摘To explore the composite process of B-CuO and B-Bi_(2)O_(3) two-component laminated sticks,obtain the corresponding sticks with good printing effect,and explore the energy release behavior.In this study,boron,copper oxide,and bismuth trioxide powders were dispersed in the dispersed phase (DMF) using F_(2602) as a binder,and the construction of two-component B-CuO,B-Bi_(2)O_(3),three-component microcomposite,and three-component macro-composite sticks were realized with the help of double nozzle direct ink writing (DIW) technique respectively.The resulting sticks were ignited by a nichrome wire energized with a direct current,and a high-speed camera system was used to record the combustion behavior of the sticks,mark the flame position,and calculate the rate of ignition.The results showed that the B-CuO stick burning rate (42.11 mm·s^(-1)) was much higher than that of B-Bi_(2)O_(3)(17.84 mm·s^(-1)).The formulation with the highest CuO content (ω_(CuO)=58.7%) in the microscale composite of the sticks also had the fastest burning rate of 60.59 mm·s^(-1),as the CuO content decreased (ω_(CuO)=43.5%,29.3%),its burning rate decreased to 34.78 mm·s^(-1),37.97 mm·s^(-1).The stick with the highest copper oxide content(ω_(CuO)=60%) also possessed the highest burning rate (48.84 mm·s^(-1)) in the macro-composite sticks,and the burning rates of the macro-composite sticks with component spacing of 0.1 mm,0.2 mm,and 0.5 mm were 43.34 mm·s^(-1),48.84 mm·s^(-1),and 40.76 mm·s^(-1).
基金supported by the National Key Research and Development Program(2021YFF0701700)the National Natural Science Foundation of China(22271305).
文摘A novel and efficient method for distinguishing between chiral diols and diphenols has been established through the use of^(19)F NMR spectroscopy.Central to this system's efficacy is a chiral amine,strategically modified with a CF_(3)group.This amine reacts in-situ with 2-formylphenylboronic acid to create a chiral^(19)F-labeled probe.This probe demonstrates discriminatory capabilities by interacting with hydroxy-containing analytes to form boronic esters.These esters produce distinct^(19)F NMR signals that vary according to their stereoconfiguration,facilitating accurate chiral differentiation.The method's resolution capacity was demonstrated by successfully identifying 12 distinct chiral analytes(six pairs of enantiomers)in complex mixtures,highlighting its extensive potential in diverse chiral analysis applications.
基金supported by the Training Program for Academic and Technical Leaders of Major Disciplines in Jiangxi Province(No.20212BCJ23020)the Science and Technology Project of Jiangxi Provincial Department of Education(No.GJJ211305)+1 种基金the National Natural Science Foundation of China(No.51671010)the National University Students Innovation and Entrepreneurship Training Program(No.202110408005)。
文摘Rational design of electrocatalysts is important for a sustainable oxygen evolution reaction(OER).It is still a huge challenge to engineer active sites in multi-sizes and multi-components simultaneously.Here,a series of CoxP nanoparticles(NPs)confined in an SiO2matrix(SiO2/CoxP)is designed and synthesized as OER electrocatalysts.The phosphorization of the hydrolyzed Co-phyllosilicate promotes the formation of ultrasmall and small Co2P and CoP.These are firmly confined in the SiO2matrix.The coupling of multi-size and multi-component CoxP catalysts can regulate reaction kinetics and electron transfer ability,enrich the active sites,and eventually promote the intrinsic OER activity.The SiO2matrix provides abundant porous structure and oxygen vacancies,and these facilitate the exposure of active sites and improve conductivity.Because of the synergy and interplay of multisized/component CoxP NPs and the porous SiO2matrix,the unique SiO2/CoxP heterostructure exhibits low overpotential(293 m V@10 mA cm-2),and robust stability(decay 12 mV after 5000 CV cycles,97.4%of initial current after 100 h chronoamperometric)for the OER process,exceeding many advanced metal phosphide electrocatalysts.This work provides a novel tactic to design low-cost,simple,and highly efficient OER electrocatalysts.
基金supported by the National Natural Science Foundation of China(U19B6003-03-01)the Science and Technology Department of Shanxi Province,China(20201101003)the National Natural Science Foundation of China(42030804).
文摘In the past 15 years,the shale gas revolution and large-scale commercial developments in the United States have driven the exploration and development of shale plays worldwide.Among many factors affecting shale gas exploration potential,the gas-bearing properties of shale(quantity,storage state,composition)and their controlling factors are the essential research attracting wide attention in the academic community.This paper reviews the research progress on the retention mechanism,influencing factors,and evaluation methods for resource potential of the shale gas system,and proposes further research directions.Sorption is the main mechanism of gas retention in organic-rich shales;the gas is mainly stored in nanopores of shale in free and sorption states.The presence of water and nonhydrocarbon gases in pores can complicate the process and mechanism of methane(CH4)sorption,and the related theoretical models still need further development.The in-situ gas content and gasbearing properties of shale are governed by the geological properties(organic matter abundance,kerogen type,thermal maturity,mineral composition,diagenesis),the properties of fluids in pores(water,CH_(4),non-hydrocarbon gases),and geological conditions(temperature,pressure,preservation conditions)of the shale itself.For a particular basin or block,it is still challenging to define the main controlling factors,screen favorable exploration areas,and locate sweet spots.Compared to marine shales with extensive research and exploration data,lacustrine and marine-continental transitional shales are a further expanding area of investigation.Various methods have been developed to quantitatively characterize the in-situ gas content of shales,but all these methods have their own limitations,and more in-depth studies are needed to accurately evaluate and predict the in-situ gas content of shales,especially shales at deep depth.
基金the financial support by the National Natural Science Foundation of China(21733005,21975115,51773087)Shenzhen Fundamental Research Program(KQJSCX20180319114442157,JCYJ20170817111214740,JCYJ20180302180238419)+4 种基金Shenzhen Nobel Prize Scientists Laboratory Project(C17213101)Guangdong Provincial Key Laboratory of Catalysis(No.2020B121201002)Guangdong Innovative and Entrepreneurial Research Team Program(2016ZT06G587)Shenzhen Sci-Tech Fund(KYTDPT20181011104007)the supported by Center for Computational Science and Engineering at SUSTech。
文摘To achieve efficient polymer solar cells(PSCs)with full utilization of the whole spectrum,the multicomponent devices are of great importance to be deeply explored,especially for their capability of one-step fabrication.However,the research about one same binary system simultaneously derivated various multi-component PSC is still very limited.Herein,we achieved the whole constructions from one binary host to different ternary systems and even the quaternary one.The ternary strategies with fullerene acceptor,PC_(71)BM,and non-fullerene acceptor,BT_(6)IC-BO-4Cl,as the third component,both boosted the device efficiencies of PBT4Cl-Bz:IT-4F binary system from about 9% to comparatively beyond 11%.Despite the comparable improvement of performance,there existed other similarities and differences in two ternary strategies.In detail,the isotropic carrier transport of PC_(71)BM which largely elevated the fill factor(FF)in the corresponding devices,while the strong absorption of BT_(6)IC-BO-4Cl enhanced the short current density(J_(SC))most.More interestingly,quaternary devices based on PBT4Cl-Bz:IT-4F:PC71 BM:BT_(6)IC-BO-4Cl could combine both advantages of fullerene and non-fullerene ternary strategies,further pumped the J_(SC) from 16.44 to the highest level of 19.66 mA cm^(-2) among all devices,eventually resulted in an optimized efficiency of 11.69%.It reveals that both fullerene and non-fullerene ternary strategies have their unique feature to elevate the device performance either by efficient isotropic carrier transport or better coverage of whole sunlight spectrum and easy tunable energy levels from organic materials.The key is how to integrate the two pathways in one system and provide a more competitive solution facing high-quality PSCs.
基金Projects 02019 supported by the Key Project of Chinese Ministry of EducationARC by the Australian Research Council, 40730422+1 种基金2006AA06Z231 by the National Natural Science Foundation of China and Special Foundation of Cooperation NSFC-ARC08010202058 by the Anhui Province Key Project
文摘Adsorption and desorption of carbon dioxide, methane and other gases on coals has been investigated experimentally using representative Zhongliangshan coals. Gas adsorption is one of the major concerns for both CO2 sequestration and methane recovery processes. The experiments were carried out using both single and multi-component mixtures at 25 ℃ and 30 ℃ with the highest pressure of 12 MPa. The coal was under moisture equilibrated conditions. This provides experimental data from which a predictive assessment of CO2 sequestration and/or methane recovery can be conducted. The results show that for pure gasses the CH4 adsorption capacity is higher than the N2 adsorption capacity but lower than the CO2 adsorption capacity. Injection of CO2 or other gases into the coal significantly affects CH4 desorption. This allows the enhancement of CH4 recovery from the coals, thus supplying more clean energy while sequestering significant amounts of CO2 thereby reducing the greenhouse effect from human beings.
文摘In this paper, we study the Wigner function of coherent state of N components, especially two components and three components. This function consists of two terms: the Gaussian term and the interference term with the negativity. The first term comprises N Gaussian surfaces evenly centred on a circle of radius |β| = |α| with a separate angle of 2π/N, and the second term is composed of 1/2N(N - 1) Gaussian-cosine surfaces evenly centred in a circular region of radius |β| 〈 |α|. Here, a is the eigenvalue of the annihilation operator α, and β is a variable in some complex space in which the Wigner function is defined. We have proved that the essential condition to eliminate the negativity of the Wigner function is that the mean photon count of the coherent state is equal to that of the Glouber coherent state.