In order to achieve a high precision in three-dimensional(3D) multi-camera measurement system, an efficient multi-cameracalibration method is proposed. A stitching method of large scalecalibration targets is deduced...In order to achieve a high precision in three-dimensional(3D) multi-camera measurement system, an efficient multi-cameracalibration method is proposed. A stitching method of large scalecalibration targets is deduced, and a fundamental of multi-cameracalibration based on the large scale calibration target is provided.To avoid the shortcomings of the method, the vector differencesof reprojection error with the presence of the constraint conditionof the constant rigid body transformation is modelled, and mini-mized by the Levenberg-Marquardt (LM) method. Results of thesimulation and observation data calibration experiment show thatthe accuracy of the system calibrated by the proposed methodreaches 2 mm when measuring distance section of 20 000 mmand scale section of 7 000 mm × 7 000 mm. Consequently, theproposed method of multi-camera calibration performs better thanthe fundamental in stability. This technique offers a more uniformerror distribution for measuring large scale space.展开更多
同时定位与地图构建(simultaneous localization and mapping,SLAM)技术在无人化装备上有着广泛的应用,可实现室内或室外自主的定位建图任务。该文首先对视觉和激光SLAM基本框架进行介绍,详细阐述前端里程计、后端优化、回环检测以及地...同时定位与地图构建(simultaneous localization and mapping,SLAM)技术在无人化装备上有着广泛的应用,可实现室内或室外自主的定位建图任务。该文首先对视觉和激光SLAM基本框架进行介绍,详细阐述前端里程计、后端优化、回环检测以及地图构建这四个模块的作用以及所采用的算法;在这之后梳理归纳视觉/激光SLAM发展历程中的经典算法并分析其优缺点以及在此之后优秀的改进方案;此外,列举当前SLAM技术在生活中的典型应用场景,展示在自动驾驶、无人化装备等领域的重要作用;最后讨论SLAM系统当前的发展趋势和研究进展,以及在未来应用中需要考虑的挑战和问题,包括多类型传感器融合、与深度学习技术的融合以及跨学科合作的关键作用。通过对SLAM技术的全面分析和讨论,为进一步推动SLAM技术的发展和应用提供深刻的理论指导和实践参考。展开更多
为解决坦克、装甲车等军用车辆在使用多相机探测系统进行环境感知时,多相机图像重叠区域小、视差大及实际应用场景中特征信息复杂多变导致广域成像困难的问题,提出一种基于棋盘格科尔多瓦大学增强现实(Chessboard Augmented Reality Uni...为解决坦克、装甲车等军用车辆在使用多相机探测系统进行环境感知时,多相机图像重叠区域小、视差大及实际应用场景中特征信息复杂多变导致广域成像困难的问题,提出一种基于棋盘格科尔多瓦大学增强现实(Chessboard Augmented Reality University of Cordoba,ChArUco)平板标定的广域实时成像算法,并设计一款军用车辆广域视觉增强系统,用于驾驶员在视野受限的密闭车厢内对车外环境进行实时成像。该算法利用ChArUco平板在受遮挡情况下仍可准确标定的特点,实现对小重叠多相机系统的精确标定,通过标定参数进行投影变换,避免图像特征信息的干扰,有效应对复杂特征场景,同时通过光流关系融合消除重叠区域的视差,并利用投影查找表和并行加速优化方法,实现广域实时成像。该算法部署于移动计算平台,形成完整的广域视觉增强系统。实验结果显示,该系统及算法能够适应多种场景的广域实时成像需求,提升军用车辆在复杂环境中的视觉感知能力。展开更多
基金supported by the National Natural Science Foundation of China(61473100)
文摘In order to achieve a high precision in three-dimensional(3D) multi-camera measurement system, an efficient multi-cameracalibration method is proposed. A stitching method of large scalecalibration targets is deduced, and a fundamental of multi-cameracalibration based on the large scale calibration target is provided.To avoid the shortcomings of the method, the vector differencesof reprojection error with the presence of the constraint conditionof the constant rigid body transformation is modelled, and mini-mized by the Levenberg-Marquardt (LM) method. Results of thesimulation and observation data calibration experiment show thatthe accuracy of the system calibrated by the proposed methodreaches 2 mm when measuring distance section of 20 000 mmand scale section of 7 000 mm × 7 000 mm. Consequently, theproposed method of multi-camera calibration performs better thanthe fundamental in stability. This technique offers a more uniformerror distribution for measuring large scale space.
文摘同时定位与地图构建(simultaneous localization and mapping,SLAM)技术在无人化装备上有着广泛的应用,可实现室内或室外自主的定位建图任务。该文首先对视觉和激光SLAM基本框架进行介绍,详细阐述前端里程计、后端优化、回环检测以及地图构建这四个模块的作用以及所采用的算法;在这之后梳理归纳视觉/激光SLAM发展历程中的经典算法并分析其优缺点以及在此之后优秀的改进方案;此外,列举当前SLAM技术在生活中的典型应用场景,展示在自动驾驶、无人化装备等领域的重要作用;最后讨论SLAM系统当前的发展趋势和研究进展,以及在未来应用中需要考虑的挑战和问题,包括多类型传感器融合、与深度学习技术的融合以及跨学科合作的关键作用。通过对SLAM技术的全面分析和讨论,为进一步推动SLAM技术的发展和应用提供深刻的理论指导和实践参考。
文摘为解决坦克、装甲车等军用车辆在使用多相机探测系统进行环境感知时,多相机图像重叠区域小、视差大及实际应用场景中特征信息复杂多变导致广域成像困难的问题,提出一种基于棋盘格科尔多瓦大学增强现实(Chessboard Augmented Reality University of Cordoba,ChArUco)平板标定的广域实时成像算法,并设计一款军用车辆广域视觉增强系统,用于驾驶员在视野受限的密闭车厢内对车外环境进行实时成像。该算法利用ChArUco平板在受遮挡情况下仍可准确标定的特点,实现对小重叠多相机系统的精确标定,通过标定参数进行投影变换,避免图像特征信息的干扰,有效应对复杂特征场景,同时通过光流关系融合消除重叠区域的视差,并利用投影查找表和并行加速优化方法,实现广域实时成像。该算法部署于移动计算平台,形成完整的广域视觉增强系统。实验结果显示,该系统及算法能够适应多种场景的广域实时成像需求,提升军用车辆在复杂环境中的视觉感知能力。