期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于MSFA-Net的车辆及车道线检测算法
1
作者 文斌 丁弈夫 +2 位作者 胡一鸣 彭顺 胡晖 《汽车安全与节能学报》 CAS CSCD 北大核心 2024年第3期433-442,共10页
车辆检测与车道线分割是自动驾驶感知系统的重要组成部分,其基本要求是具有高精度和实时性。鉴此提出一种双任务多尺度特征聚合网络(MSFA-Net),该网络由1个特征提取网络和2个检测分支网络构成,实现了车辆和车道线同时检测。首先使用E-E... 车辆检测与车道线分割是自动驾驶感知系统的重要组成部分,其基本要求是具有高精度和实时性。鉴此提出一种双任务多尺度特征聚合网络(MSFA-Net),该网络由1个特征提取网络和2个检测分支网络构成,实现了车辆和车道线同时检测。首先使用E-ELAN网络构造共享主干特征网络;在车辆检测分支网络设计增强卷积模块(CBS+)进行自下而上的特征融合以提升精度;在车道线检测分支网络使用特征融合模块(FeatFuse)对多分辨率特征进行自适应加权融合,配合空洞卷积语义感知模块(CDBS)使用梯形结构的多空洞值卷积对融合特征进行采样,以提升不连续车道线及其他非线性车道的分割精度。结果表明:在BDD100K数据集上,该文网络MSFA-Net其平均精度均值、召回率、像素准确率分别达到了81.3%、90.1%和80.1%,检测帧率达到了41.6帧/s,能较好适应真实行车环境的需求。 展开更多
关键词 车辆检测 交通图像 深度学习 车道线分割 双任务多尺度特征聚合网络(msfa-Net)
在线阅读 下载PDF
基于多尺度聚合与高分辨率增强的CTA脑血管分割模型
2
作者 张天旭 黄慧 +5 位作者 黄丙仓 马燕 徐傲 李晓艳 周孝雯 刘之之 《计算机工程》 北大核心 2025年第4期37-46,共10页
在颅脑CT血管造影(CTA)图像中,脑血管形态各异、分布分散且不同患者之间差异较大。这导致利用U-Net进行血管分割时对血管局部形态的适应性不足,容易忽略分散目标之间的相关性,且在下采样过程中会丢失小尺度血管信息。针对以上问题,在U-... 在颅脑CT血管造影(CTA)图像中,脑血管形态各异、分布分散且不同患者之间差异较大。这导致利用U-Net进行血管分割时对血管局部形态的适应性不足,容易忽略分散目标之间的相关性,且在下采样过程中会丢失小尺度血管信息。针对以上问题,在U-Net的基础上进行改进,提出一种基于多尺度聚合和高分辨率增强的血管分割网络BVU-Net。在编码器的瓶颈层设计一种结合空洞变形金字塔(DDP)路径与全局注意力(GA)路径的多尺度特征聚合(MSFA)模块,旨在同时捕获血管的不同尺度的局部形态特征和全局空间相关性特征。在跳跃连接路径中设计高分辨率特征增强(HRFE)模块,使模型能充分利用语义信息更丰富的高级特征,提高浅层高分辨率特征的表征能力,补充小血管信息,进一步提升血管分割精度。BVU-Net模型在公开数据集3D-IRCADb和私有数据集GLCTA上进行实验验证,Dice指标分别达到0.787 2和0.924 8,平均交并比(MIoU)指标分别达到0.832 2和0.932 1。上述结果表明,BVU-Net模型的表现优于其他基于U-Net的改进分割模型,具有一定泛化能力,为后续的临床治疗和预后分析提供了更有力的参考。 展开更多
关键词 脑血管分割 急性缺血性卒中 多尺度特征聚合 高分辨率增强 可变形卷积
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部