Multi-project multi-site location problems are multi-objective combinational optimization ones with discrete variables which are hard to solve. To do so, the case of particle swarm optimization is considered due to it...Multi-project multi-site location problems are multi-objective combinational optimization ones with discrete variables which are hard to solve. To do so, the case of particle swarm optimization is considered due to its useful char- acteristics such as easy implantation, simple parameter settings and fast convergence. First these problems are trans- formed into ones with continuous variables by defining an equivalent probability matrix in this paper, then multi-objective particle swarm optimization based on the minimal particle angle is used to solve them. Methods such as continuation of discrete variables, update of particles for matrix variables, normalization of particle position and evalua- tion of particle fitness are presented. Finally the efficiency of the proposed method is validated by comparing it with other methods on an eight-project-ten-site location problem.展开更多
With the development of the Internet of Things(IoT),spatio-temporal crowdsourcing(mobile crowdsourcing)has become an emerging paradigm for addressing location-based sensing tasks.However,the delay caused by network tr...With the development of the Internet of Things(IoT),spatio-temporal crowdsourcing(mobile crowdsourcing)has become an emerging paradigm for addressing location-based sensing tasks.However,the delay caused by network transmission has led to low data processing efficiency.Fortunately,edge computing can solve this problem,effectively reduce the delay of data transmission,and improve data processing capacity,so that the crowdsourcing platform can make better decisions faster.Therefore,this paper combines spatio-temporal crowdsourcing and edge computing to study the Multi-Objective Optimization Task Assignment(MOO-TA)problem in the edge computing environment.The proposed online incentive mechanism considers the task difficulty attribute to motivate crowd workers to perform sensing tasks in the unpopular area.In this paper,the Weighted and Multi-Objective Particle Swarm Combination(WAMOPSC)algorithm is proposed to maximize both platform’s and crowd workers’utility,so as to maximize social welfare.The algorithm combines the traditional Linear Weighted Summation(LWS)algorithm and Multi-Objective Particle Swarm Optimization(MOPSO)algorithm to find pareto optimal solutions of multi-objective optimization task assignment problem as much as possible for crowdsourcing platform to choose.Through comparison experiments on real data sets,the effectiveness and feasibility of the proposed method are evaluated.展开更多
Task scheduling in cloud computing environments is a multi-objective optimization problem, which is NP hard. It is also a challenging problem to find an appropriate trade-off among resource utilization, energy consump...Task scheduling in cloud computing environments is a multi-objective optimization problem, which is NP hard. It is also a challenging problem to find an appropriate trade-off among resource utilization, energy consumption and Quality of Service(QoS) requirements under the changing environment and diverse tasks. Considering both processing time and transmission time, a PSO-based Adaptive Multi-objective Task Scheduling(AMTS) Strategy is proposed in this paper. First, the task scheduling problem is formulated. Then, a task scheduling policy is advanced to get the optimal resource utilization, task completion time, average cost and average energy consumption. In order to maintain the particle diversity, the adaptive acceleration coefficient is adopted. Experimental results show that the improved PSO algorithm can obtain quasi-optimal solutions for the cloud task scheduling problem.展开更多
轮毂电机电动汽车(in-wheel motor electric vehicle,IWM-EV)的电机激励与车辆系统的耦合特性严重的恶化车辆的动力学性能以及电机的工作稳定性,针对这种振动负效应问题,建立了考虑机电耦合的车辆动力学耦合模型,并设计了工况识别的主...轮毂电机电动汽车(in-wheel motor electric vehicle,IWM-EV)的电机激励与车辆系统的耦合特性严重的恶化车辆的动力学性能以及电机的工作稳定性,针对这种振动负效应问题,建立了考虑机电耦合的车辆动力学耦合模型,并设计了工况识别的主动悬架多目标粒子群(multi-objective particle swarm optimization,MOPSO)模糊滑模控制器。基于傅里叶级数法建立了轮毂电机的垂向不平衡激励与电机转矩的电机模型;将电机模型与车辆动力学模型结合建立了电机与悬架联合的垂向-驱动非线性动力学耦合模型。基于耦合模型分析了车辆的机电耦合振动负效应特性,针对模型强非线性的特点,设计了耦合模型的非线性控制器。仿真结果表明,控制器能既能有效的减小电机的相对偏心率,抑制电机不平衡电磁力,又能提升车辆动力学性能,有效的抑制了轮毂电机电动汽车的振动负效应。展开更多
To predict renewable energy sources such as solar power in microgrids more accurately,a hybrid power prediction method is presented in this paper.First,the self-attention mechanism is introduced based on a bidirection...To predict renewable energy sources such as solar power in microgrids more accurately,a hybrid power prediction method is presented in this paper.First,the self-attention mechanism is introduced based on a bidirectional gated recurrent neural network(BiGRU)to explore the time-series characteristics of solar power output and consider the influence of different time nodes on the prediction results.Subsequently,an improved quantum particle swarm optimization(QPSO)algorithm is proposed to optimize the hyperparameters of the combined prediction model.The final proposed LQPSO-BiGRU-self-attention hybrid model can predict solar power more effectively.In addition,considering the coordinated utilization of various energy sources such as electricity,hydrogen,and renewable energy,a multi-objective optimization model that considers both economic and environmental costs was constructed.A two-stage adaptive multi-objective quantum particle swarm optimization algorithm aided by a Lévy flight,named MO-LQPSO,was proposed for the comprehensive optimal scheduling of a multi-energy microgrid system.This algorithm effectively balances the global and local search capabilities and enhances the solution of complex nonlinear problems.The effectiveness and superiority of the proposed scheme are verified through comparative simulations.展开更多
基金Project 60304016 supported by the Nationa Natural Science Foundation of China
文摘Multi-project multi-site location problems are multi-objective combinational optimization ones with discrete variables which are hard to solve. To do so, the case of particle swarm optimization is considered due to its useful char- acteristics such as easy implantation, simple parameter settings and fast convergence. First these problems are trans- formed into ones with continuous variables by defining an equivalent probability matrix in this paper, then multi-objective particle swarm optimization based on the minimal particle angle is used to solve them. Methods such as continuation of discrete variables, update of particles for matrix variables, normalization of particle position and evalua- tion of particle fitness are presented. Finally the efficiency of the proposed method is validated by comparing it with other methods on an eight-project-ten-site location problem.
基金supported in part by the National Natural Science Foundation of China under Grant 61822602,Grant 61772207,Grant 61802331,Grant 61572418,Grant 61602399,Grant 61702439 and Grant 61773331the China Postdoctoral Science Foundation under Grant 2019T120732 and Grant 2017M622691+1 种基金the National Science Foundation(NSF)under Grant 1704287,Grant 1252292 and Grant 1741277the Natural Science Foundation of Shandong Province under Grant ZR2016FM42.
文摘With the development of the Internet of Things(IoT),spatio-temporal crowdsourcing(mobile crowdsourcing)has become an emerging paradigm for addressing location-based sensing tasks.However,the delay caused by network transmission has led to low data processing efficiency.Fortunately,edge computing can solve this problem,effectively reduce the delay of data transmission,and improve data processing capacity,so that the crowdsourcing platform can make better decisions faster.Therefore,this paper combines spatio-temporal crowdsourcing and edge computing to study the Multi-Objective Optimization Task Assignment(MOO-TA)problem in the edge computing environment.The proposed online incentive mechanism considers the task difficulty attribute to motivate crowd workers to perform sensing tasks in the unpopular area.In this paper,the Weighted and Multi-Objective Particle Swarm Combination(WAMOPSC)algorithm is proposed to maximize both platform’s and crowd workers’utility,so as to maximize social welfare.The algorithm combines the traditional Linear Weighted Summation(LWS)algorithm and Multi-Objective Particle Swarm Optimization(MOPSO)algorithm to find pareto optimal solutions of multi-objective optimization task assignment problem as much as possible for crowdsourcing platform to choose.Through comparison experiments on real data sets,the effectiveness and feasibility of the proposed method are evaluated.
基金partially been sponsored by the National Science Foundation of China(No.61572355,61272093,610172063)Tianjin Research Program of Application Foundation and Advanced Technology under grant No.15JCYBJC15700
文摘Task scheduling in cloud computing environments is a multi-objective optimization problem, which is NP hard. It is also a challenging problem to find an appropriate trade-off among resource utilization, energy consumption and Quality of Service(QoS) requirements under the changing environment and diverse tasks. Considering both processing time and transmission time, a PSO-based Adaptive Multi-objective Task Scheduling(AMTS) Strategy is proposed in this paper. First, the task scheduling problem is formulated. Then, a task scheduling policy is advanced to get the optimal resource utilization, task completion time, average cost and average energy consumption. In order to maintain the particle diversity, the adaptive acceleration coefficient is adopted. Experimental results show that the improved PSO algorithm can obtain quasi-optimal solutions for the cloud task scheduling problem.
文摘轮毂电机电动汽车(in-wheel motor electric vehicle,IWM-EV)的电机激励与车辆系统的耦合特性严重的恶化车辆的动力学性能以及电机的工作稳定性,针对这种振动负效应问题,建立了考虑机电耦合的车辆动力学耦合模型,并设计了工况识别的主动悬架多目标粒子群(multi-objective particle swarm optimization,MOPSO)模糊滑模控制器。基于傅里叶级数法建立了轮毂电机的垂向不平衡激励与电机转矩的电机模型;将电机模型与车辆动力学模型结合建立了电机与悬架联合的垂向-驱动非线性动力学耦合模型。基于耦合模型分析了车辆的机电耦合振动负效应特性,针对模型强非线性的特点,设计了耦合模型的非线性控制器。仿真结果表明,控制器能既能有效的减小电机的相对偏心率,抑制电机不平衡电磁力,又能提升车辆动力学性能,有效的抑制了轮毂电机电动汽车的振动负效应。
基金supported by the National Natural Science Foundation of China under Grant 51977004the Beijing Natural Science Foundation under Grant 4212042.
文摘To predict renewable energy sources such as solar power in microgrids more accurately,a hybrid power prediction method is presented in this paper.First,the self-attention mechanism is introduced based on a bidirectional gated recurrent neural network(BiGRU)to explore the time-series characteristics of solar power output and consider the influence of different time nodes on the prediction results.Subsequently,an improved quantum particle swarm optimization(QPSO)algorithm is proposed to optimize the hyperparameters of the combined prediction model.The final proposed LQPSO-BiGRU-self-attention hybrid model can predict solar power more effectively.In addition,considering the coordinated utilization of various energy sources such as electricity,hydrogen,and renewable energy,a multi-objective optimization model that considers both economic and environmental costs was constructed.A two-stage adaptive multi-objective quantum particle swarm optimization algorithm aided by a Lévy flight,named MO-LQPSO,was proposed for the comprehensive optimal scheduling of a multi-energy microgrid system.This algorithm effectively balances the global and local search capabilities and enhances the solution of complex nonlinear problems.The effectiveness and superiority of the proposed scheme are verified through comparative simulations.