期刊文献+
共找到50篇文章
< 1 2 3 >
每页显示 20 50 100
Solving material distribution routing problem in mixed manufacturing systems with a hybrid multi-objective evolutionary algorithm 被引量:7
1
作者 高贵兵 张国军 +2 位作者 黄刚 朱海平 顾佩华 《Journal of Central South University》 SCIE EI CAS 2012年第2期433-442,共10页
The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency... The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency. A multi-objective model was presented for the material distribution routing problem in mixed manufacturing systems, and it was solved by a hybrid multi-objective evolutionary algorithm (HMOEA). The characteristics of the HMOEA are as follows: 1) A route pool is employed to preserve the best routes for the population initiation; 2) A specialized best?worst route crossover (BWRC) mode is designed to perform the crossover operators for selecting the best route from Chromosomes 1 to exchange with the worst one in Chromosomes 2, so that the better genes are inherited to the offspring; 3) A route swap mode is used to perform the mutation for improving the convergence speed and preserving the better gene; 4) Local heuristics search methods are applied in this algorithm. Computational study of a practical case shows that the proposed algorithm can decrease the total travel distance by 51.66%, enhance the average vehicle load rate by 37.85%, cut down 15 routes and reduce a deliver vehicle. The convergence speed of HMOEA is faster than that of famous NSGA-II. 展开更多
关键词 material distribution routing problem multi-objective optimization evolutionary algorithm local search
在线阅读 下载PDF
Optimal setting and placement of FACTS devices using strength Pareto multi-objective evolutionary algorithm 被引量:2
2
作者 Amin Safari Hossein Shayeghi Mojtaba Bagheri 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第4期829-839,共11页
This work proposes a novel approach for multi-type optimal placement of flexible AC transmission system(FACTS) devices so as to optimize multi-objective voltage stability problem. The current study discusses a way for... This work proposes a novel approach for multi-type optimal placement of flexible AC transmission system(FACTS) devices so as to optimize multi-objective voltage stability problem. The current study discusses a way for locating and setting of thyristor controlled series capacitor(TCSC) and static var compensator(SVC) using the multi-objective optimization approach named strength pareto multi-objective evolutionary algorithm(SPMOEA). Maximization of the static voltage stability margin(SVSM) and minimizations of real power losses(RPL) and load voltage deviation(LVD) are taken as the goals or three objective functions, when optimally locating multi-type FACTS devices. The performance and effectiveness of the proposed approach has been validated by the simulation results of the IEEE 30-bus and IEEE 118-bus test systems. The proposed approach is compared with non-dominated sorting particle swarm optimization(NSPSO) algorithm. This comparison confirms the usefulness of the multi-objective proposed technique that makes it promising for determination of combinatorial problems of FACTS devices location and setting in large scale power systems. 展开更多
关键词 STRENGTH PARETO multi-objective evolutionary algorithm STATIC var COMPENSATOR (SVC) THYRISTOR controlled series capacitor (TCSC) STATIC voltage stability margin optimal location
在线阅读 下载PDF
An improved multi-objective optimization algorithm for solving flexible job shop scheduling problem with variable batches 被引量:3
3
作者 WU Xiuli PENG Junjian +2 位作者 XIE Zirun ZHAO Ning WU Shaomin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期272-285,共14页
In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop pro... In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop problem with the variable batches scheduling model is formulated.Second,we propose a batch optimization algorithm with inverse scheduling in which the batch size is adjusted by the dynamic feedback batch adjusting method.Moreover,in order to increase the diversity of the population,two methods are developed.One is the threshold to control the neighborhood updating,and the other is the dynamic clustering algorithm to update the population.Finally,a group of experiments are carried out.The results show that the improved multi-objective optimization algorithm can ensure the diversity of Pareto solutions effectively,and has effective performance in solving the flexible job shop scheduling problem with variable batches. 展开更多
关键词 flexible job shop variable batch inverse scheduling multi-objective evolutionary algorithm based on decomposition a batch optimization algorithm with inverse scheduling
在线阅读 下载PDF
Multi-objective optimization of operation loop recommendation for kill web 被引量:5
4
作者 YANG Kewei XIA Boyuan +2 位作者 CHEN Gang YANG Zhiwei LI Minghao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第4期969-985,共17页
In order to improve our military ’s level of intelligent accusation decision-making in future intelligent joint warfare, this paper studies operation loop recommendation methods for kill web based on the fundamental ... In order to improve our military ’s level of intelligent accusation decision-making in future intelligent joint warfare, this paper studies operation loop recommendation methods for kill web based on the fundamental combat form of the future, i.e.,“web-based kill,” and the operation loop theory. Firstly, we pioneer the operation loop recommendation problem with operation ring quality as the objective and closed-loop time as the constraint, and construct the corresponding planning model.Secondly, considering the case where there are multiple decision objectives for the combat ring recommendation problem,we propose for the first time a multi-objective optimization algorithm, the multi-objective ant colony evolutionary algorithm based on decomposition(MOACEA/D), which integrates the multi-objective evolutionary algorithm based on decomposition(MOEA/D) with the ant colony algorithm. The MOACEA/D can converge the optimal solutions of multiple single objectives nondominated solution set for the multi-objective problem. Finally,compared with other classical multi-objective optimization algorithms, the MOACEA/D is superior to other algorithms superior in terms of the hyper volume(HV), which verifies the effectiveness of the method and greatly improves the quality and efficiency of commanders’ decision-making. 展开更多
关键词 multi-objective operation loop recommendation kill web ant colony evolutionary algorithm hyper volume(HV)
在线阅读 下载PDF
基于改进MOEA/D的模糊柔性作业车间调度算法
5
作者 郑锦灿 邵立珍 雷雪梅 《计算机工程》 CAS CSCD 北大核心 2024年第6期336-345,共10页
针对实际生产车间中加工时间的不确定性,将加工时间以模糊数的形式表示,建立以最小化模糊最大完工时间和模糊总材料消耗为优化目标的多目标模糊柔性作业车间调度问题数学模型,提出一种改进基于分解的多目标进化算法(IMOEA/D)进行求解。... 针对实际生产车间中加工时间的不确定性,将加工时间以模糊数的形式表示,建立以最小化模糊最大完工时间和模糊总材料消耗为优化目标的多目标模糊柔性作业车间调度问题数学模型,提出一种改进基于分解的多目标进化算法(IMOEA/D)进行求解。该算法基于机器和工序两层编码并采用混合的初始化策略提高初始种群的质量,利用插入式贪婪解码策略对机器的选择进行解码,缩短总加工时间;采用基于邻域和外部存档的选择操作结合改进的交叉变异算子进行种群更新,提高搜索效率;设置邻域搜索的启动条件,并基于4种邻域动作进行变邻域搜索,提高局部搜索能力;通过田口实验设计方法研究关键参数对算法性能的影响,同时得到算法的最优性能参数。在Xu 1~Xu 2、Lei 1~Lei 4和Remanu 1~Remanu 4测试集上将所提算法与其他算法进行对比,结果表明,IMOEA/D算法的解集数量和目标函数值均较优,在Lei 2算例获得的解集个数为对比算法的2倍以上。 展开更多
关键词 模糊柔性作业车间调度问题 基于分解的多目标进化算法 混合初始化 选择策略 邻域搜索
在线阅读 下载PDF
一种基于正态分布交叉的ε-MOEA 被引量:33
6
作者 张敏 罗文坚 王煦法 《软件学报》 EI CSCD 北大核心 2009年第2期305-314,共10页
实数编码的多目标进化算法常使用模拟二进制交叉(simulated binary crossover,称SBX)算子.通过对SBX以及进化策略中变异算子进行对比分析,并引入进化策略中的离散重组算子,提出了一种正态分布交叉(normal distribution crossover,称NDX... 实数编码的多目标进化算法常使用模拟二进制交叉(simulated binary crossover,称SBX)算子.通过对SBX以及进化策略中变异算子进行对比分析,并引入进化策略中的离散重组算子,提出了一种正态分布交叉(normal distribution crossover,称NDX)算子.首先在一维搜索空间实例中对NDX与SBX算子进行比较和分析,然后将NDX算子应用于Deb等人提出的稳态多目标进化算法ε-MOEA(ε-dominance based multiobjective evolutionary algorithm)中.采用NDX算子的ε-MOEA(记为ε-MOEA/NDX)算法在多目标优化标准测试集ZDT和DTLZ的10个函数上进行了实验比较.实验结果和分析表明,采用NDX的ε-MOEA所求得的Pareto最优解集质量明显优于经典算法ε-MOEA/SBX和NSGA-Ⅱ. 展开更多
关键词 进化多目标优化 ε-moea(ε-dominance BASED MULTIOBJECTIVE evolutionary algorithm) 正态分布交叉 模拟二进制交叉
在线阅读 下载PDF
基于多目标进化算法混合框架的MOEA/D算法 被引量:7
7
作者 田红军 汪镭 吴启迪 《系统仿真学报》 CAS CSCD 北大核心 2020年第2期201-216,共16页
针对混合多目标进化算法中如何设计全局搜索算法和局部搜索策略结合机制的难点问题以及提高多目标进化算法的求解性能,基于反馈控制思想,提出了一种系统化、模块化的全局优化与局部搜索相结合的混合MOEA/D算法,算法中设计了一种基于拥... 针对混合多目标进化算法中如何设计全局搜索算法和局部搜索策略结合机制的难点问题以及提高多目标进化算法的求解性能,基于反馈控制思想,提出了一种系统化、模块化的全局优化与局部搜索相结合的混合MOEA/D算法,算法中设计了一种基于拥挤熵的种群多样性度量方法;提出了基于简化二次逼近的局部搜索策略,以及针对MOEA/D的种群多样性增强策略。数值实验表明所提算法具有良好性能,可以兼顾算法求解的多样性和收敛性,所提混合框架可有效提升现有多目标进化算法的求解性能。 展开更多
关键词 多目标优化 进化算法 混合框架 moea/D 反馈控制
在线阅读 下载PDF
基于改进MOEA/D的车联网通信资源分配算法 被引量:4
8
作者 郑丽萍 赵玉娟 费选 《计算机工程》 CAS CSCD 北大核心 2023年第5期191-197,共7页
为获得车联网通信资源分配的最优解,提出一种基于改进MOEA/D的车联网通信资源分配优化算法。将车联网资源请求的阻塞率和资源请求成功的总成本这2个相互冲突的网络通信资源分配要素作为网络通信资源分配的2个优化目标,根据车联网中行驶... 为获得车联网通信资源分配的最优解,提出一种基于改进MOEA/D的车联网通信资源分配优化算法。将车联网资源请求的阻塞率和资源请求成功的总成本这2个相互冲突的网络通信资源分配要素作为网络通信资源分配的2个优化目标,根据车联网中行驶车辆的特点,对请求资源车辆和提供资源车辆设置约束条件。在此基础上,采用自适应邻域策略平衡进化过程中种群的收敛性和分布性,并将迭代次数引入自适应度,调节交叉算子和变异算子,使种群中较差的个体也具有遗传性,从而保证种群的多样性。同时,随着迭代次数的增加,种群中较差个体遗传性降低,较好个体遗传能力增强,从而保证种群的优化。仿真结果表明,该算法针对最小化阻塞率和最小化成本这2个目标能够获得满意的优化效果,在迭代次数、车辆数和资源请求数变化情况下都存在最优解,在相同迭代次数下,与基于支配的多目标算法SPEA2和NSGA-II相比具有较低的阻塞率和较好的收敛性。 展开更多
关键词 车联网 通信资源分配 多目标进化算法 moea/D算法 阻塞率 成本
在线阅读 下载PDF
采用MOEA/D算法的含风电系统环境经济调度 被引量:2
9
作者 朱永胜 王杰 《郑州大学学报(工学版)》 CAS 北大核心 2014年第4期96-100,共5页
建立含风电系统的环境经济调度(Environmental Economic Dispatch,EED)模型,提出采用基于分解的多目标进化算法(Multi-objective Evolutionary Algorithm Based on Decomposition,MOEA/D)来求解,并在算法中加入约束处理,归一化及变异操... 建立含风电系统的环境经济调度(Environmental Economic Dispatch,EED)模型,提出采用基于分解的多目标进化算法(Multi-objective Evolutionary Algorithm Based on Decomposition,MOEA/D)来求解,并在算法中加入约束处理,归一化及变异操作来改善算法的性能并保持解的多样性,以获得理想的Pareto最优前沿.通过仿真计算,并与其他优化算法进行对比分析,验证了MOEA/D算法解决含风电EED问题的可行性和有效性. 展开更多
关键词 风电 环境经济调度 多目标进化算法 moea D PARETO最优前沿
在线阅读 下载PDF
改进自适应MOEA/D算法的楼宇负荷优化调度 被引量:7
10
作者 易灵芝 林佳豪 +2 位作者 刘建康 罗显光 李旺 《计算机工程与应用》 CSCD 北大核心 2022年第2期295-302,共8页
针对负荷侧用户用电电费、新能源消纳率和用电峰谷差等问题,提出了一种改进的自适应基于分解的多目标进化算法,进行楼宇微电网签约住户可控负荷优化调度;通过分析负荷的用电特性,将用电负荷分为五类并分类建立数学模型、优化目标函数和... 针对负荷侧用户用电电费、新能源消纳率和用电峰谷差等问题,提出了一种改进的自适应基于分解的多目标进化算法,进行楼宇微电网签约住户可控负荷优化调度;通过分析负荷的用电特性,将用电负荷分为五类并分类建立数学模型、优化目标函数和约束条件;将广义分解与均匀分配相结合产生新的自适应权重向量使算法非支配解更接近真实帕累托前沿;采用历史经验的思想通过计数SBX和DE两种交叉算子对外部存档的贡献率,运用轮盘赌的方式实现自适应选择策略;通过特性约束条件映射对产生的子代点进行修正,间接地扩大了算法搜索空间,提高了种群多样性。通过测试函数验证了改进的AWS-MOEA/D算法的收敛性和优越性;在某小区楼宇住户调度仿真实验结果表明,所改进的算法在调度后能节省更多的电费,并有效地提高了新能源消纳率。 展开更多
关键词 楼宇微电网 自适应选择策略 自适应权重向量 基于分解的多目标进化算法(moea/D) 自动需求响应
在线阅读 下载PDF
基于自适应邻域策略的改进型MOEA/D算法 被引量:2
11
作者 耿焕同 韩伟民 +1 位作者 丁洋洋 周山胜 《计算机工程》 CAS CSCD 北大核心 2019年第5期161-168,共8页
为避免传统MOEA/D算法使用固定领域规模易造成种群进化效率降低的情况,提出一种基于自适应邻域策略的改进算法。设计一种能够反映子问题进化幅度和种群进化状态的判断机制。针对进化过程中的收敛性和分布性需求,提出基于进化状态判断的... 为避免传统MOEA/D算法使用固定领域规模易造成种群进化效率降低的情况,提出一种基于自适应邻域策略的改进算法。设计一种能够反映子问题进化幅度和种群进化状态的判断机制。针对进化过程中的收敛性和分布性需求,提出基于进化状态判断的自适应邻域策略,从而根据种群和子问题的进化状态设定不同的邻域规模。使用WFG系列测试函数进行实验,结果表明,该算法能有效平衡进化过程中种群的收敛性与分布性,提高解集的整体性能。 展开更多
关键词 基于分解的多目标进化算法 邻域更新能力 进化状态 判断机制 自适应邻域策略
在线阅读 下载PDF
一种基于新型差分进化模型的MOEA/D改进算法 被引量:2
12
作者 耿焕同 周利发 +1 位作者 丁洋洋 周山胜 《计算机工程与应用》 CSCD 北大核心 2019年第8期138-146,263,共10页
针对MOEA/D算法中差分进化操作收敛精度不高且速度较慢的不足,提出了一种综合基于可控支配域的向量差生成策略和基于主成分的动态缩放因子的新型差分进化模型,均衡显性与隐性搜索引导;并实现了一种基于新型差分进化模型的MOEA/D改进算法... 针对MOEA/D算法中差分进化操作收敛精度不高且速度较慢的不足,提出了一种综合基于可控支配域的向量差生成策略和基于主成分的动态缩放因子的新型差分进化模型,均衡显性与隐性搜索引导;并实现了一种基于新型差分进化模型的MOEA/D改进算法(MOEA/D-iDE)。新型差分进化是借助基于可控支配域的非支配排序对邻域进行分层,根据分层信息生成与不同进化阶段相匹配的向量差,实现对种群收敛速度的显性引导;同时对决策空间进行主成分分析,动态调整差分进化缩放因子,实现对种群收敛精度的隐性引导。实验选取ZDT、DTLZ和WFG等为测试问题,以IGD+,ER作为评价指标,将MOEA/D-iDE算法与6个同类算法进行对比实验,结果表明新算法在保证多样性的同时具有更好的收敛速度与精度,从而验证了新型差分进化模型的有效性。 展开更多
关键词 差分进化 可控支配域 主成分分析 基于分解的多目标进化算法
在线阅读 下载PDF
基于局部线性嵌入与差分进化的MOEA/D算法 被引量:1
13
作者 耿焕同 周利发 +1 位作者 丁洋洋 周山胜 《计算机工程》 CAS CSCD 北大核心 2019年第3期162-168,共7页
针对基于分解的多目标进化算法选择压力低、收敛速度慢的问题,提出一种局部线性嵌入(LLE)差分进化算法。根据LLE特性降低种群目标空间维数,利用快速非支配排序对种群分支配解进行分层,进而通过差分进化操作提高种群收敛速度。实验结果表... 针对基于分解的多目标进化算法选择压力低、收敛速度慢的问题,提出一种局部线性嵌入(LLE)差分进化算法。根据LLE特性降低种群目标空间维数,利用快速非支配排序对种群分支配解进行分层,进而通过差分进化操作提高种群收敛速度。实验结果表明,与dMOPSO算法相比,该算法在保证多样性的同时具有较高的选择压力和较快的收敛速度。 展开更多
关键词 局部线性嵌入 差分进化 进化算子 高维 多目标进化算法
在线阅读 下载PDF
基于正交设计的自适应ε占优MOEA/D算法研究 被引量:4
14
作者 周攀 张冬梅 +2 位作者 龚文引 李阳 刘凯伟 《计算机应用与软件》 CSCD 北大核心 2013年第2期58-64,124,共8页
MOEA/D是一种简单、高效的多目标优化算法,但在更新子问题时,会丢失部分优良个体,降低算法的收敛速度。针对上述不足,提出一种基于正交设计的自适应ε占优算法。新算法改进如下:(1)采用正交试验设计和连续空间量化初始化种群,使初始化... MOEA/D是一种简单、高效的多目标优化算法,但在更新子问题时,会丢失部分优良个体,降低算法的收敛速度。针对上述不足,提出一种基于正交设计的自适应ε占优算法。新算法改进如下:(1)采用正交试验设计和连续空间量化初始化种群,使初始化群体能均匀分布;(2)设计一种自适应调整松弛变量改进的ε占优机制,并用它来更新Archive种群保存非劣解;(3)将精英策略引入到MOEA/D中,加快收敛速度。实验结果表明新算法较好地改善了MOEA/D算法的收敛性以及非劣解的分布性。 展开更多
关键词 moea D 自适应ε占优 正交实验 多目标演化算法
在线阅读 下载PDF
基于邻域和变异算子组合优化的MOEA/D算法 被引量:6
15
作者 刘璐 郑力明 《计算机工程》 CAS CSCD 北大核心 2017年第3期232-240,共9页
考虑到在基于分解的多目标进化算法(MOEA/D)中,邻域大小与变异算子类型对算法进化过程中的探索模式有不同的影响,提出优化的MOEA/D算法。4种不同大小的邻域范围和4个特性不同的变异策略两两组合构成候选池,利用负反馈原则,在进化过程中... 考虑到在基于分解的多目标进化算法(MOEA/D)中,邻域大小与变异算子类型对算法进化过程中的探索模式有不同的影响,提出优化的MOEA/D算法。4种不同大小的邻域范围和4个特性不同的变异策略两两组合构成候选池,利用负反馈原则,在进化过程中以较高概率从候选池中选择表现更优的组合。实验结果表明,该算法鲁棒性较强,在保证收敛性的同时具有较好的多样性。 展开更多
关键词 邻域范围 变异算子类型 候选池 基于分解的多目标进化算法 多目标优化
在线阅读 下载PDF
基于多目标进化算法的MOEA/D权重向量产生方法 被引量:3
16
作者 马庆 《计算机科学》 CSCD 北大核心 2016年第S2期117-122,160,共7页
在进化多目标优化研究领域,多目标优化是指对含有2个及以上目标的多目标问题的同时优化,其在近些年来受到越来越多的关注。随着MOEA/D的提出,基于聚合的多目标进化算法得到越来越多的研究,对MOEA/D算法的改进已有较多成果,但是很少有成... 在进化多目标优化研究领域,多目标优化是指对含有2个及以上目标的多目标问题的同时优化,其在近些年来受到越来越多的关注。随着MOEA/D的提出,基于聚合的多目标进化算法得到越来越多的研究,对MOEA/D算法的改进已有较多成果,但是很少有成果研究MOEA/D中权重的产生方法。提出一种使用多目标进化算法产生任意多个均匀分布的权重向量的方法,将其应用到MOEA/D,MSOPS和NSGA-III中,对这3个经典的基于聚合的多目标进化算法进行系统的比较研究。通过该类算法在DTLZ测试集、多目标旅行商问题MOTSP上的优化结果来分别研究该类算法在连续性问题、组合优化问题上的优化能力,以及使用矩形测试问题使得多目标进化算法的优化结果在决策空间可视化。实验结果表明,没有一个算法能适用于所有特性的问题。然而,MOEA/D采用不同聚合函数的两个算法MOEA/D_Tchebycheff和MOEA/D_PBI在多数情况下的性能比MSOPS和NSGA-III更好。 展开更多
关键词 进化多目标优化 多目标进化算法 多目标优化问题 性能指标 解集可视化
在线阅读 下载PDF
基于改进MOEA/D的钢铁多介质能源计划优化 被引量:1
17
作者 欧阳洪才 吴定会 +1 位作者 范俊岩 汪晶 《系统仿真学报》 CAS CSCD 北大核心 2023年第3期568-578,共11页
针对多介质钢铁能源计划模型存在变量较多、约束复杂和模型求解难度高等问题,提出基于自适应邻域的改进MOEA/D(decomposition-based multi-objective evolutionary algorithm)实现多介质能源计划优化。考虑分时电价特性和煤气柜的缓冲作... 针对多介质钢铁能源计划模型存在变量较多、约束复杂和模型求解难度高等问题,提出基于自适应邻域的改进MOEA/D(decomposition-based multi-objective evolutionary algorithm)实现多介质能源计划优化。考虑分时电价特性和煤气柜的缓冲作用,构建以最小化运行成本和总能耗的目标函数,设计能源介质供需和工序饱和度等模型约束;基于能源产耗规则的解码方法确定目标值,定义归一化的切比雪夫聚合函数和种群进化程度的自适应邻域更新,设计改进MOEA/D的能源计划优化算法。仿真对比实验验证了改进MOEA/D有效实现能源计划优化,提高解的收敛性,降低运行成本1.3%和能耗1.2%。 展开更多
关键词 能源计划 多目标 能耗 moea/D 邻域更新
在线阅读 下载PDF
基于MOEA/D算法的起重船压载水调配优化
18
作者 周佳 宋磊 《中国舰船研究》 CSCD 北大核心 2021年第4期155-163,共9页
[目的]为提高起重船压载水调配效率,降低调载过程能耗,提出基于分解技术的多目标进化算法(MOEA/D)的起重船压载水调配优化方法。[方法]以各压载水舱调配后的水量为决策变量,以压载水总调配量最小为优化目标,引入浮态等方面的约束,建立... [目的]为提高起重船压载水调配效率,降低调载过程能耗,提出基于分解技术的多目标进化算法(MOEA/D)的起重船压载水调配优化方法。[方法]以各压载水舱调配后的水量为决策变量,以压载水总调配量最小为优化目标,引入浮态等方面的约束,建立起重船压载水调配优化的数学模型;针对因决策变量维数高所引起的求解速度慢和求解质量差的问题,提出调载水舱自适应选择方法,以减少参与调载的水舱数量;针对约束条件处理复杂的问题,将单目标优化转化为多目标优化问题,然后应用MOEA/D算法,从Pareto解集中优选得到起重船压载水调配的最优方案。[结果]对某起重船吊机回转过程的压载水调配实例计算结果显示,基于MOEA/D的算法较NSGA-Ⅱ算法和遗传算法(GA)在满足浮态容差的条件下,参与调载的舱室数量减少了27%,调载水量分别减少了24%和38%,验证了MOEA/D算法的可行性和有效性。[结论]所提的基于MOEA/D的方法可为研究起重船压载水调配优化问题提供一种新的解决思路,能得到较优的压载水调配方案,具有一定的工程应用价值。 展开更多
关键词 起重船 压载水调配 自适应选择 多目标优化 基于分解技术的多目标进化算法
在线阅读 下载PDF
采用基于分解的多目标进化算法的电力环境经济调度 被引量:31
19
作者 朱永胜 王杰 +1 位作者 瞿博阳 P.N.Suganthan 《电网技术》 EI CSCD 北大核心 2014年第6期1577-1584,共8页
为了准确、快速地求解电力系统环境经济调度(environmental economic dispatching,EED)问题,将基于分解的多目标进化算法(multi-objective evolutionary algorithm based on decomposition,MOEA/D)应用于电力调度领域,提出了基于MOEA/D... 为了准确、快速地求解电力系统环境经济调度(environmental economic dispatching,EED)问题,将基于分解的多目标进化算法(multi-objective evolutionary algorithm based on decomposition,MOEA/D)应用于电力调度领域,提出了基于MOEA/D的多目标环境经济调度算法。该算法首先采用Tchebycheff法将整个EED Pareto最优前沿的逼近问题分解为一定数量的单目标优化子问题,然后利用差分进化同时求解这些子问题,并在算法中加入约束处理及归一化操作,以获得最优的带约束EED问题的调度方案。最后,应用模糊集理论为决策者提供最优折中解。对IEEE 30节点测试系统进行仿真计算,并与其它智能优化算法的调度方案对比。结果表明,该算法有效可行,且具有很好的收敛速度和求解精度。 展开更多
关键词 环境经济调度 多目标进化算法 moea D PARETO最优前沿
在线阅读 下载PDF
高速铁路接触网悬挂系统维修计划的优化研究 被引量:18
20
作者 李雪 吴俊勇 +3 位作者 杨媛 严翔 刘晓民 徐伟燕 《铁道学报》 EI CAS CSCD 北大核心 2010年第2期24-30,共7页
将高速铁路接触网系统的维修方式分为3类,根据不同维修方式下系统的可靠性和维修费用不同的特点,建立不同维修组合下接触网系统的动态可靠性模型和维修费用模型。为实现提高接触网系统的可靠性并降低维修费用的目标,提出一种混沌自适应... 将高速铁路接触网系统的维修方式分为3类,根据不同维修方式下系统的可靠性和维修费用不同的特点,建立不同维修组合下接触网系统的动态可靠性模型和维修费用模型。为实现提高接触网系统的可靠性并降低维修费用的目标,提出一种混沌自适应进化算法(CSEA)来求解这一多目标优化问题。该算法的混沌初始种群算子提高了初代种群的多样性,分组选择策略保证各代有一定数量的劣势个体能参与进化,自适应遗传算子增加了劣势个体的交叉和变异概率,从而避免算法早熟,增强了算法的全局搜索能力。计算结果表明,CSEA在种群多样性保持和帕累托(Pareto)最优解收敛方面均优于流行的NSGA-Ⅱ多目标算法。采用CSEA算法得到的优化维修计划,可显著提高接触网系统的可靠性,也大幅度降低维修费用。将本文多目标优化算法与传统的单目标优化算法进行比较,验证了多目标优化算法的优越性。 展开更多
关键词 多目标进化算法(moea) 混沌初始种群 自适应遗传算法 接触网系统(CS)
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部