Intelligent production is an important development direction in intelligent manufacturing,with intelligent factories playing a crucial role in promoting intelligent production.Flexible job shops,as the main form of in...Intelligent production is an important development direction in intelligent manufacturing,with intelligent factories playing a crucial role in promoting intelligent production.Flexible job shops,as the main form of intelligent factories,constantly face dynamic disturbances during the production process,including machine failures and urgent orders.This paper discusses the basic models and research methods of job shop scheduling,emphasizing the important role of dynamic job shop scheduling and its response schemes in future research.A multi-objective flexible job shop dynamic scheduling mathematical model is established,highlighting its complex and multi-constraint characteristics under different interferences.A classification discussion is conducted on the dynamic response methods and optimization objectives under machine failures,emergency orders,fuzzy completion times,and mixed dynamic events.The development process of traditional scheduling rules and intelligent methods in dynamic scheduling are also analyzed.Finally,based on the current development status of job shop scheduling and the requirements of intelligent manufacturing,the future development trends of dynamic scheduling in flexible job shops are proposed.展开更多
A policy iteration algorithm of adaptive dynamic programming(ADP) is developed to solve the optimal tracking control for a class of discrete-time chaotic systems. By system transformations, the optimal tracking prob...A policy iteration algorithm of adaptive dynamic programming(ADP) is developed to solve the optimal tracking control for a class of discrete-time chaotic systems. By system transformations, the optimal tracking problem is transformed into an optimal regulation one. The policy iteration algorithm for discrete-time chaotic systems is first described. Then,the convergence and admissibility properties of the developed policy iteration algorithm are presented, which show that the transformed chaotic system can be stabilized under an arbitrary iterative control law and the iterative performance index function simultaneously converges to the optimum. By implementing the policy iteration algorithm via neural networks,the developed optimal tracking control scheme for chaotic systems is verified by a simulation.展开更多
An approach about large dynamic programming based on discrete linear system with a quadratic index function is proposed by importing two Lagrange multipliers.
In short-term operation of natural gas network,the impact of demand uncertainty is not negligible.To address this issue we propose a two-stage robust model for power cost minimization problem in gunbarrel natural gas ...In short-term operation of natural gas network,the impact of demand uncertainty is not negligible.To address this issue we propose a two-stage robust model for power cost minimization problem in gunbarrel natural gas networks.The demands between pipelines and compressor stations are uncertain with a budget parameter,since it is unlikely that all the uncertain demands reach the maximal deviation simultaneously.During solving the two-stage robust model we encounter a bilevel problem which is challenging to solve.We formulate it as a multi-dimensional dynamic programming problem and propose approximate dynamic programming methods to accelerate the calculation.Numerical results based on real network in China show that we obtain a speed gain of 7 times faster in average without compromising optimality compared with original dynamic programming algorithm.Numerical results also verify the advantage of robust model compared with deterministic model when facing uncertainties.These findings offer short-term operation methods for gunbarrel natural gas network management to handle with uncertainties.展开更多
The convergence and stability of a value-iteration-based adaptive dynamic programming (ADP) algorithm are con- sidered for discrete-time nonlinear systems accompanied by a discounted quadric performance index. More ...The convergence and stability of a value-iteration-based adaptive dynamic programming (ADP) algorithm are con- sidered for discrete-time nonlinear systems accompanied by a discounted quadric performance index. More importantly than sufficing to achieve a good approximate structure, the iterative feedback control law must guarantee the closed-loop stability. Specifically, it is firstly proved that the iterative value function sequence will precisely converge to the optimum. Secondly, the necessary and sufficient condition of the optimal value function serving as a Lyapunov function is investi- gated. We prove that for the case of infinite horizon, there exists a finite horizon length of which the iterative feedback control law will provide stability, and this increases the practicability of the proposed value iteration algorithm. Neural networks (NNs) are employed to approximate the value functions and the optimal feedback control laws, and the approach allows the implementation of the algorithm without knowing the internal dynamics of the system. Finally, a simulation example is employed to demonstrate the effectiveness of the developed optimal control method.展开更多
To improve the efficiency of gate reassignment and optimize the plan of gate reassignment,the concept of disruption management is introduced,and a multi-objective programming model for airport gate reassignment is pro...To improve the efficiency of gate reassignment and optimize the plan of gate reassignment,the concept of disruption management is introduced,and a multi-objective programming model for airport gate reassignment is proposed.Considering the interests of passengers and the airport,the model minimizes the total flight delay,the total passengers′walking distance and the number of flights reassigned to other gates different from the planned ones.According to the characteristics of the gate reassignment,the model is simplified.As the multi-objective programming model is hard to reach the optimal solutions simultaneously,a threshold of satisfactory solutions of the model is set.Then a simulated annealing algorithm is designed for the model.Case studies show that the model decreases the total flight delay to the satisfactory solutions,and minimizes the total passengers′walking distance.The least change of planned assignment is also reached.The results achieve the goals of disruption management.Therefore,the model is verified to be effective.展开更多
Litter decomposition and ecological stoichiometry of nutrient release is an important part of material cycling and energy flow in forest ecosystems.In a study of the ecological stoichiometry and nutrient release durin...Litter decomposition and ecological stoichiometry of nutrient release is an important part of material cycling and energy flow in forest ecosystems.In a study of the ecological stoichiometry and nutrient release during litter decomposition in a pine–oak forest ecosystem of the Grain to Green Program(GTGP)area of northern China,a typical pine and oak species(PDS:Pinus densiflora Sieb.,QAC:Quercus acutissima Carr.)were selected in the Taiyi Mountain study area.The ecological stoichiometry characteristics of carbon(C),nitrogen(N)and phosphorus(P)and litter decomposition dynamics were studied by field sampling and quantitative analyses.The results showed the following.(1)The decomposition dynamics of both litters was slow-fast-slow.The most important climatic factor affecting the litter decomposition rate from May to October was precipitation and temperature from November to April of the following year.(2)Throughout the 300-day study,in both litters,C of the two litters was released,N first accumulated and was then released,and P exhibited a release-accumulate-release pattern.(3)C:P was significantly higher than C:N and N:P(p<0.05);the C:N of PSD litter was higher than that of QAC(p<0.05),but the N:P of QAC litter was higher than that of PSD litter(p<0.05).The C:N of both litters was very high in the study area,indicating that the nutrient release ability during litter decomposition in the two typical pine–oak forest ecosystems was relatively weak;therefore,more attention should be paid to nitrogen-fixing species and mixed forests in the GTGP area of northern China.展开更多
To improve the efficiency of ship traffic in frequently traded sea areas and respond to the national“dual-carbon”strategy,a multi-objective ship route induction model is proposed.Considering the energy-saving and en...To improve the efficiency of ship traffic in frequently traded sea areas and respond to the national“dual-carbon”strategy,a multi-objective ship route induction model is proposed.Considering the energy-saving and environmental issues of ships,this study aims to improve the transportation efficiency of ships by providing a ship route induction method.Ship data from a certain bay during a defined period are collected,and an improved backpropagation neural network algorithm is used to forecast ship traffic.On the basis of the forecasted data and ship route induction objectives,dynamic programming of ship routes is performed.Experimental results show that the routes planned using this induction method reduce the combined cost by 17.55%compared with statically induced routes.This method has promising engineering applications in improving ship navigation efficiency,promoting energy conservation,and reducing emissions.展开更多
A novel centralized approach for Dynamic Spectrum Allocation (DSA) in the Cognitive Radio (CR) network is presented in this paper. Instead of giving the solution in terms of formulas modeling network environment such ...A novel centralized approach for Dynamic Spectrum Allocation (DSA) in the Cognitive Radio (CR) network is presented in this paper. Instead of giving the solution in terms of formulas modeling network environment such as linear programming or convex optimization, the new approach obtains the capability of iteratively on-line learning environment performance by using Reinforcement Learning (RL) algorithm after observing the variability and uncertainty of the heterogeneous wireless networks. Appropriate decision-making access actions can then be obtained by employing Fuzzy Inference System (FIS) which ensures the strategy being able to explore the possible status and exploit the experiences sufficiently. The new approach considers multi-objective such as spectrum efficiency and fairness between CR Access Points (AP) effectively. By interacting with the environment and accumulating comprehensive advantages, it can achieve the largest long-term reward expected on the desired objectives and implement the best action. Moreover, the present algorithm is relatively simple and does not require complex calculations. Simulation results show that the proposed approach can get better performance with respect to fixed frequency planning scheme or general dynamic spectrum allocation policy.展开更多
Aiming to reduce fuel consumption and emissions of a dual-clutch hybrid electric vehicle during cold start, multiobjective optimization for fuel consumption and HC/CO emission from a TWC(three-way catalytic converter)...Aiming to reduce fuel consumption and emissions of a dual-clutch hybrid electric vehicle during cold start, multiobjective optimization for fuel consumption and HC/CO emission from a TWC(three-way catalytic converter) outlet is presented in this paper. DP(dynamic programming) considering dual-state variables is proposed based on the Bellman optimality principle. Both the battery SOC(state of charge) and the temperature of TWC monolith are considered in the algorithm simultaneously. In this way the global optimal control strategy and the Pareto optimal solution of multi-objective function are derived. Simulation results show that the proposed method is able to promote the TWC light-off significantly by decreasing the engine's load and improving exhaust temperature from the outlet of the engine, in comparison with original DP considering the single battery SOC. Compared to the results achieved by rule-based control strategy, fuel economy and emission of TWC outlet for cold start are optimized comprehensively. Each indicator of Pareto solution set shows the significant improvement.展开更多
Modulating both the clock frequency and supply voltage of the network-on-chip (NoC) during runtime can reduce the power consumption and heat flux, but will lead to the increase of the latency of NoC. It is necessary...Modulating both the clock frequency and supply voltage of the network-on-chip (NoC) during runtime can reduce the power consumption and heat flux, but will lead to the increase of the latency of NoC. It is necessary to find a tradeoff between power consumption and communication latency. So we propose an analytical latency model which can show us the relationship of them. The proposed model to analyze latency is based on the M/G/1 queuing model, which is suitable for dynamic frequency scaling. The experiment results show that the accuracy of this model is more than 90%.展开更多
High-brightness electron beams are required to drive LINAC-based free-electron lasers(FELs)and storage-ring-based synchrotron radiation light sources.The bunch charge and RMS bunch length at the exit of the LINAC play...High-brightness electron beams are required to drive LINAC-based free-electron lasers(FELs)and storage-ring-based synchrotron radiation light sources.The bunch charge and RMS bunch length at the exit of the LINAC play a crucial role in the peak current;the minimum transverse emittance is mainly determined by the injector of the LINAC.Thus,a photoin-jector with a high bunch charge and low emittance that can simultaneously provide high-quality beams for 4th generation synchrotron radiation sources and FELs is desirable.The design of a 1.6-cell S-band 2998-MHz RF gun and beam dynamics optimization of a relevant beamline are presented in this paper.Beam dynamics simulations were performed by combining ASTRA and the multi-objective genetic algorithm NSGA II.The effects of the laser pulse shape,half-cell length of the RF gun,and RF parameters on the output beam quality were analyzed and compared.The normalized transverse emittance was optimized to be as low as 0.65 and 0.92 mm·mrad when the bunch charge was as high as 1 and 2 nC,respectively.Finally,the beam stability properties of the photoinjector,considering misalignment and RF jitter,were simulated and analyzed.展开更多
We develop an optimal tracking control method for chaotic system with unknown dynamics and disturbances. The method allows the optimal cost function and the corresponding tracking control to update synchronously. Acco...We develop an optimal tracking control method for chaotic system with unknown dynamics and disturbances. The method allows the optimal cost function and the corresponding tracking control to update synchronously. According to the tracking error and the reference dynamics, the augmented system is constructed. Then the optimal tracking control problem is defined. The policy iteration (PI) is introduced to solve the rain-max optimization problem. The off-policy adaptive dynamic programming (ADP) algorithm is then proposed to find the solution of the tracking Hamilton-Jacobi- Isaacs (HJI) equation online only using measured data and without any knowledge about the system dynamics. Critic neural network (CNN), action neural network (ANN), and disturbance neural network (DNN) are used to approximate the cost function, control, and disturbance. The weights of these networks compose the augmented weight matrix, and the uniformly ultimately bounded (UUB) of which is proven. The convergence of the tracking error system is also proven. Two examples are given to show the effectiveness of the proposed synchronous solution method for the chaotic system tracking problem.展开更多
To improve the operation situation of difficulty and low efficiency in the extraction of fermented grains(FG),a high-load and large-workspace reclaiming robot for ceramic cylinder fermentation is designed,and a reclai...To improve the operation situation of difficulty and low efficiency in the extraction of fermented grains(FG),a high-load and large-workspace reclaiming robot for ceramic cylinder fermentation is designed,and a reclaiming effector is designed according to the operating characteristics.Firstly,the kinematics and singularity of the mechanism are analyzed.A multi-domain polar coordinate search method is proposed to obtain the workspace and the volume of the mechanism.Secondly,the dynamic modeling is completed and the example simulation is carried out.Thirdly,the motion-force transmission index of the mechanism is established.And based on the global transmissibility and the good-transmission workspace,the dimensional synthesis of the driving mechanism is completed by using the performance atlas-based method.Finally,aiming at the regular workspace size,stiffness and loading capacity,the Pareto optimal solution set of the executive mechanism dimension is obtained by using the multi-objective particle swarm optimization(MOPSO)algorithm.This paper can provide a theoretical basis for the optimal design and control of FG reclaiming robot.展开更多
基金supported by the National Key Research and Development Program Project(No.2021YFB3301300).
文摘Intelligent production is an important development direction in intelligent manufacturing,with intelligent factories playing a crucial role in promoting intelligent production.Flexible job shops,as the main form of intelligent factories,constantly face dynamic disturbances during the production process,including machine failures and urgent orders.This paper discusses the basic models and research methods of job shop scheduling,emphasizing the important role of dynamic job shop scheduling and its response schemes in future research.A multi-objective flexible job shop dynamic scheduling mathematical model is established,highlighting its complex and multi-constraint characteristics under different interferences.A classification discussion is conducted on the dynamic response methods and optimization objectives under machine failures,emergency orders,fuzzy completion times,and mixed dynamic events.The development process of traditional scheduling rules and intelligent methods in dynamic scheduling are also analyzed.Finally,based on the current development status of job shop scheduling and the requirements of intelligent manufacturing,the future development trends of dynamic scheduling in flexible job shops are proposed.
基金supported by the National Natural Science Foundation of China(Grant Nos.61034002,61233001,61273140,61304086,and 61374105)the Beijing Natural Science Foundation,China(Grant No.4132078)
文摘A policy iteration algorithm of adaptive dynamic programming(ADP) is developed to solve the optimal tracking control for a class of discrete-time chaotic systems. By system transformations, the optimal tracking problem is transformed into an optimal regulation one. The policy iteration algorithm for discrete-time chaotic systems is first described. Then,the convergence and admissibility properties of the developed policy iteration algorithm are presented, which show that the transformed chaotic system can be stabilized under an arbitrary iterative control law and the iterative performance index function simultaneously converges to the optimum. By implementing the policy iteration algorithm via neural networks,the developed optimal tracking control scheme for chaotic systems is verified by a simulation.
文摘An approach about large dynamic programming based on discrete linear system with a quadratic index function is proposed by importing two Lagrange multipliers.
基金partially supported by the National Science Foundation of China(Grants 71822105 and 91746210)。
文摘In short-term operation of natural gas network,the impact of demand uncertainty is not negligible.To address this issue we propose a two-stage robust model for power cost minimization problem in gunbarrel natural gas networks.The demands between pipelines and compressor stations are uncertain with a budget parameter,since it is unlikely that all the uncertain demands reach the maximal deviation simultaneously.During solving the two-stage robust model we encounter a bilevel problem which is challenging to solve.We formulate it as a multi-dimensional dynamic programming problem and propose approximate dynamic programming methods to accelerate the calculation.Numerical results based on real network in China show that we obtain a speed gain of 7 times faster in average without compromising optimality compared with original dynamic programming algorithm.Numerical results also verify the advantage of robust model compared with deterministic model when facing uncertainties.These findings offer short-term operation methods for gunbarrel natural gas network management to handle with uncertainties.
文摘The convergence and stability of a value-iteration-based adaptive dynamic programming (ADP) algorithm are con- sidered for discrete-time nonlinear systems accompanied by a discounted quadric performance index. More importantly than sufficing to achieve a good approximate structure, the iterative feedback control law must guarantee the closed-loop stability. Specifically, it is firstly proved that the iterative value function sequence will precisely converge to the optimum. Secondly, the necessary and sufficient condition of the optimal value function serving as a Lyapunov function is investi- gated. We prove that for the case of infinite horizon, there exists a finite horizon length of which the iterative feedback control law will provide stability, and this increases the practicability of the proposed value iteration algorithm. Neural networks (NNs) are employed to approximate the value functions and the optimal feedback control laws, and the approach allows the implementation of the algorithm without knowing the internal dynamics of the system. Finally, a simulation example is employed to demonstrate the effectiveness of the developed optimal control method.
基金Supported by the National Natural Science Foundation of China(71103034)the Natural Science Foundation of Jiangsu Province(bk2011084)
文摘To improve the efficiency of gate reassignment and optimize the plan of gate reassignment,the concept of disruption management is introduced,and a multi-objective programming model for airport gate reassignment is proposed.Considering the interests of passengers and the airport,the model minimizes the total flight delay,the total passengers′walking distance and the number of flights reassigned to other gates different from the planned ones.According to the characteristics of the gate reassignment,the model is simplified.As the multi-objective programming model is hard to reach the optimal solutions simultaneously,a threshold of satisfactory solutions of the model is set.Then a simulated annealing algorithm is designed for the model.Case studies show that the model decreases the total flight delay to the satisfactory solutions,and minimizes the total passengers′walking distance.The least change of planned assignment is also reached.The results achieve the goals of disruption management.Therefore,the model is verified to be effective.
基金The study was subsidized by Grants from the Natural Science Foundation of Shandong Province of China(No.ZR2016CM49)the Special Fund for Forestry Scientific Research in the Public Interest(No.201404303-08).This work was supported by CFERN and BEIJING TECHNO SOLUTIONS Award Funds for excellent academic achievements.
文摘Litter decomposition and ecological stoichiometry of nutrient release is an important part of material cycling and energy flow in forest ecosystems.In a study of the ecological stoichiometry and nutrient release during litter decomposition in a pine–oak forest ecosystem of the Grain to Green Program(GTGP)area of northern China,a typical pine and oak species(PDS:Pinus densiflora Sieb.,QAC:Quercus acutissima Carr.)were selected in the Taiyi Mountain study area.The ecological stoichiometry characteristics of carbon(C),nitrogen(N)and phosphorus(P)and litter decomposition dynamics were studied by field sampling and quantitative analyses.The results showed the following.(1)The decomposition dynamics of both litters was slow-fast-slow.The most important climatic factor affecting the litter decomposition rate from May to October was precipitation and temperature from November to April of the following year.(2)Throughout the 300-day study,in both litters,C of the two litters was released,N first accumulated and was then released,and P exhibited a release-accumulate-release pattern.(3)C:P was significantly higher than C:N and N:P(p<0.05);the C:N of PSD litter was higher than that of QAC(p<0.05),but the N:P of QAC litter was higher than that of PSD litter(p<0.05).The C:N of both litters was very high in the study area,indicating that the nutrient release ability during litter decomposition in the two typical pine–oak forest ecosystems was relatively weak;therefore,more attention should be paid to nitrogen-fixing species and mixed forests in the GTGP area of northern China.
基金Supported by the National Key R&D Program of China project (2017YFC0805309)the National Natural Science Foundation of China (60602020)。
文摘To improve the efficiency of ship traffic in frequently traded sea areas and respond to the national“dual-carbon”strategy,a multi-objective ship route induction model is proposed.Considering the energy-saving and environmental issues of ships,this study aims to improve the transportation efficiency of ships by providing a ship route induction method.Ship data from a certain bay during a defined period are collected,and an improved backpropagation neural network algorithm is used to forecast ship traffic.On the basis of the forecasted data and ship route induction objectives,dynamic programming of ship routes is performed.Experimental results show that the routes planned using this induction method reduce the combined cost by 17.55%compared with statically induced routes.This method has promising engineering applications in improving ship navigation efficiency,promoting energy conservation,and reducing emissions.
基金supported in part by National Science Fund for Distinguished Young Scholars project under Grant No.60725105National Basic Research Program of China (973 Pro-gram) under Grant No.2009CB320404+1 种基金National Natural Science Foundation of China under Grant No.61072068Fundamental Research Funds for the Central Universities under Grant No.JY10000901031
文摘A novel centralized approach for Dynamic Spectrum Allocation (DSA) in the Cognitive Radio (CR) network is presented in this paper. Instead of giving the solution in terms of formulas modeling network environment such as linear programming or convex optimization, the new approach obtains the capability of iteratively on-line learning environment performance by using Reinforcement Learning (RL) algorithm after observing the variability and uncertainty of the heterogeneous wireless networks. Appropriate decision-making access actions can then be obtained by employing Fuzzy Inference System (FIS) which ensures the strategy being able to explore the possible status and exploit the experiences sufficiently. The new approach considers multi-objective such as spectrum efficiency and fairness between CR Access Points (AP) effectively. By interacting with the environment and accumulating comprehensive advantages, it can achieve the largest long-term reward expected on the desired objectives and implement the best action. Moreover, the present algorithm is relatively simple and does not require complex calculations. Simulation results show that the proposed approach can get better performance with respect to fixed frequency planning scheme or general dynamic spectrum allocation policy.
基金Funded by National Natural Science Foundation of China(No.51305472)National Natural Science Foundation of Chongqing Science and Technology Committee(No.cstc2014jcyj A60005)Natural Science Foundation of Chongqing Education Committee(No.KJ1400312)
文摘Aiming to reduce fuel consumption and emissions of a dual-clutch hybrid electric vehicle during cold start, multiobjective optimization for fuel consumption and HC/CO emission from a TWC(three-way catalytic converter) outlet is presented in this paper. DP(dynamic programming) considering dual-state variables is proposed based on the Bellman optimality principle. Both the battery SOC(state of charge) and the temperature of TWC monolith are considered in the algorithm simultaneously. In this way the global optimal control strategy and the Pareto optimal solution of multi-objective function are derived. Simulation results show that the proposed method is able to promote the TWC light-off significantly by decreasing the engine's load and improving exhaust temperature from the outlet of the engine, in comparison with original DP considering the single battery SOC. Compared to the results achieved by rule-based control strategy, fuel economy and emission of TWC outlet for cold start are optimized comprehensively. Each indicator of Pareto solution set shows the significant improvement.
基金supported by the National Natural Science Foundation of China under Grant No.61376024 and No.61306024Natural Science Foundation of Guangdong Province under Grant No.S2013040014366Basic Research Programme of Shenzhen No.JCYJ20140417113430642 and JCYJ20140901003939020
文摘Modulating both the clock frequency and supply voltage of the network-on-chip (NoC) during runtime can reduce the power consumption and heat flux, but will lead to the increase of the latency of NoC. It is necessary to find a tradeoff between power consumption and communication latency. So we propose an analytical latency model which can show us the relationship of them. The proposed model to analyze latency is based on the M/G/1 queuing model, which is suitable for dynamic frequency scaling. The experiment results show that the accuracy of this model is more than 90%.
基金supported by the Science and Technology Major Project of Hubei Province,China (No.2021AFB001).
文摘High-brightness electron beams are required to drive LINAC-based free-electron lasers(FELs)and storage-ring-based synchrotron radiation light sources.The bunch charge and RMS bunch length at the exit of the LINAC play a crucial role in the peak current;the minimum transverse emittance is mainly determined by the injector of the LINAC.Thus,a photoin-jector with a high bunch charge and low emittance that can simultaneously provide high-quality beams for 4th generation synchrotron radiation sources and FELs is desirable.The design of a 1.6-cell S-band 2998-MHz RF gun and beam dynamics optimization of a relevant beamline are presented in this paper.Beam dynamics simulations were performed by combining ASTRA and the multi-objective genetic algorithm NSGA II.The effects of the laser pulse shape,half-cell length of the RF gun,and RF parameters on the output beam quality were analyzed and compared.The normalized transverse emittance was optimized to be as low as 0.65 and 0.92 mm·mrad when the bunch charge was as high as 1 and 2 nC,respectively.Finally,the beam stability properties of the photoinjector,considering misalignment and RF jitter,were simulated and analyzed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61304079,61673054,and 61374105)the Fundamental Research Funds for the Central Universities,China(Grant No.FRF-TP-15-056A3)the Open Research Project from SKLMCCS,China(Grant No.20150104)
文摘We develop an optimal tracking control method for chaotic system with unknown dynamics and disturbances. The method allows the optimal cost function and the corresponding tracking control to update synchronously. According to the tracking error and the reference dynamics, the augmented system is constructed. Then the optimal tracking control problem is defined. The policy iteration (PI) is introduced to solve the rain-max optimization problem. The off-policy adaptive dynamic programming (ADP) algorithm is then proposed to find the solution of the tracking Hamilton-Jacobi- Isaacs (HJI) equation online only using measured data and without any knowledge about the system dynamics. Critic neural network (CNN), action neural network (ANN), and disturbance neural network (DNN) are used to approximate the cost function, control, and disturbance. The weights of these networks compose the augmented weight matrix, and the uniformly ultimately bounded (UUB) of which is proven. The convergence of the tracking error system is also proven. Two examples are given to show the effectiveness of the proposed synchronous solution method for the chaotic system tracking problem.
基金supported by the National Natural Science Foundation of China(No.51905367)。
文摘To improve the operation situation of difficulty and low efficiency in the extraction of fermented grains(FG),a high-load and large-workspace reclaiming robot for ceramic cylinder fermentation is designed,and a reclaiming effector is designed according to the operating characteristics.Firstly,the kinematics and singularity of the mechanism are analyzed.A multi-domain polar coordinate search method is proposed to obtain the workspace and the volume of the mechanism.Secondly,the dynamic modeling is completed and the example simulation is carried out.Thirdly,the motion-force transmission index of the mechanism is established.And based on the global transmissibility and the good-transmission workspace,the dimensional synthesis of the driving mechanism is completed by using the performance atlas-based method.Finally,aiming at the regular workspace size,stiffness and loading capacity,the Pareto optimal solution set of the executive mechanism dimension is obtained by using the multi-objective particle swarm optimization(MOPSO)algorithm.This paper can provide a theoretical basis for the optimal design and control of FG reclaiming robot.