期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
SSA-MLP模型在岩质边坡稳定性预测中的应用 被引量:6
1
作者 侯克鹏 包广拓 孙华芬 《安全与环境学报》 CAS CSCD 北大核心 2024年第5期1795-1803,共9页
岩质边坡的力学参数量化及稳定性分析对岩质边坡灾害的防治具有重要意义。Hoek-Brown(H B)准则是一种用于确定岩体力学参数的经典方法,能反映出边坡岩体变形和位移的非线性破坏特征。在此基础上,首先,提出一种麻雀搜索算法(Sparrow Sear... 岩质边坡的力学参数量化及稳定性分析对岩质边坡灾害的防治具有重要意义。Hoek-Brown(H B)准则是一种用于确定岩体力学参数的经典方法,能反映出边坡岩体变形和位移的非线性破坏特征。在此基础上,首先,提出一种麻雀搜索算法(Sparrow Search Algorithm,SSA)改进多层感知器(Multi-Layer Perceptron,MLP)的神经网络模型,并用于边坡稳定性预测、指标敏感性分析及参数反演。其次,将收集的1085组岩质边坡的几何参数和H B准则参数等作为输入变量,极限平衡理论Bishop法求解的安全系数作为输出变量,对SSA MLP模型进行训练学习和性能评估。最后,将该模型运用于25个边坡实例,验证模型的有效性。结果显示,该模型收敛速度快、精度高,为边坡稳定性分析和参数量化提供了一种新思路。 展开更多
关键词 安全工程 边坡稳定性 HOEK-BROWN准则 多层感知器(mlp)神经网络 麻雀搜索算法 参数反演
在线阅读 下载PDF
Determination of penetration depth at high velocity impact using finite element method and artificial neural network tools 被引量:4
2
作者 Nam?k KILI? Blent EKICI Selim HARTOMACIOG LU 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2015年第2期110-122,共13页
Determination of ballistic performance of an armor solution is a complicated task and evolved significantly with the application of finite element methods(FEM) in this research field.The traditional armor design studi... Determination of ballistic performance of an armor solution is a complicated task and evolved significantly with the application of finite element methods(FEM) in this research field.The traditional armor design studies performed with FEM requires sophisticated procedures and intensive computational effort,therefore simpler and accurate numerical approaches are always worthwhile to decrease armor development time.This study aims to apply a hybrid method using FEM simulation and artificial neural network(ANN) analysis to approximate ballistic limit thickness for armor steels.To achieve this objective,a predictive model based on the artificial neural networks is developed to determine ballistic resistance of high hardness armor steels against 7.62 mm armor piercing ammunition.In this methodology,the FEM simulations are used to create training cases for Multilayer Perceptron(MLP) three layer networks.In order to validate FE simulation methodology,ballistic shot tests on 20 mm thickness target were performed according to standard Stanag 4569.Afterwards,the successfully trained ANN(s) is used to predict the ballistic limit thickness of 500 HB high hardness steel armor.Results show that even with limited number of data,FEM-ANN approach can be used to predict ballistic penetration depth with adequate accuracy. 展开更多
关键词 人工神经网络 有限元法 穿透深度 性能测定 高速冲击 有限元模拟 FEM模拟 工具
在线阅读 下载PDF
基于MLP-Bagging的PCB电热耦合建模方法
3
作者 耿悦 周远国 +2 位作者 任强 梁尚清 杨国卿 《半导体技术》 CAS 北大核心 2024年第10期912-919,共8页
随着三维集成电路性能的提高和复杂程度的增加,印制电路板(PCB)的散热问题日益突出。研究了PCB在电热多物理场相互作用下各部件的发热情况,提出了基于混合激活函数的多层感知机(MLP)-Bagging多物理参数算法。通过使用ReLU和Sigmoid两个... 随着三维集成电路性能的提高和复杂程度的增加,印制电路板(PCB)的散热问题日益突出。研究了PCB在电热多物理场相互作用下各部件的发热情况,提出了基于混合激活函数的多层感知机(MLP)-Bagging多物理参数算法。通过使用ReLU和Sigmoid两个激活函数进行学习和训练,建立了精度更高的MLP模型。之后,结合Bagging算法构建多个并行的MLP模型。所提出的神经网络多物理模型可以快速准确地预测PCB的电热响应。实验结果表明,此方法与有限元法相比,可以节省约97%的计算内存和99%的计算时间,与传统神经网络如随机森林(RF)、长短时记忆(LSTM)网络、MLP相比,该方法表现优良且泛化能力较好,为提高PCB设计效率提供了一种可行方法,为PCB热分析提供了更高效的解决方法。 展开更多
关键词 有限元法(FEM) 人工神经网络(ANN) 多层感知机(mlp)-Bagging 多物理场 电热耦合
在线阅读 下载PDF
MCNet:融合多层感知机和卷积的轻量级病变区域分割网络
4
作者 申华磊 上官国庆 +2 位作者 袁成雨 陈艳浩 刘栋 《河南师范大学学报(自然科学版)》 北大核心 2025年第3期96-103,共8页
针对现有医学图像分割网络存在计算量大、对硬件资源要求高和推理速度慢等不足,提出一种轻量级快速分割网络MCNet.MCNet采用编码器-解码器架构,使用多层感知机(MLP)和卷积分别提取并融合医学图像的全局特征和局部特征,以减少网络参数量... 针对现有医学图像分割网络存在计算量大、对硬件资源要求高和推理速度慢等不足,提出一种轻量级快速分割网络MCNet.MCNet采用编码器-解码器架构,使用多层感知机(MLP)和卷积分别提取并融合医学图像的全局特征和局部特征,以减少网络参数量并提高分割精度.在编码阶段使用卷积分支和多层感知机分支分别提取多尺度的局部特征和全局特征.通过跳跃连接融合这些特征并送入解码器.在解码阶段使用注意力门控机制进行特征增强.在BUSI和ISIC2018数据集上进行实验.和当前最优方法相比,MCNet的Dice相似系数和均交并比在BUSI数据集上分别提高0.11%和0.09%、在ISIC2018数据集上分别提高0.64%和0.95%.同时,MCNet显著减少了网络参数量、降低了浮点运算次数并缩短了CPU推理时间. 展开更多
关键词 医学图像分割 深度神经网络 多层感知机(mlp) 轻量级网络
在线阅读 下载PDF
用于短文本分类的BLSTM_MLPCNN模型 被引量:11
5
作者 郑诚 洪彤彤 薛满意 《计算机科学》 CSCD 北大核心 2019年第6期206-211,共6页
文本表示和文本特征提取是自然语言处理的基础工作,直接影响文本分类的性能。文中提出了以字符级向量联合词向量作为输入的BLSTM_MLPCNN神经网络模型。该模型首先将卷积神经网络(CNN)作用于字符以获取字符级向量,并将字符级向量联合词... 文本表示和文本特征提取是自然语言处理的基础工作,直接影响文本分类的性能。文中提出了以字符级向量联合词向量作为输入的BLSTM_MLPCNN神经网络模型。该模型首先将卷积神经网络(CNN)作用于字符以获取字符级向量,并将字符级向量联合词向量作为预训练词嵌入向量,也即双向长短时记忆网(BLSTM)模型的输入;然后联合BLSTM模型的前向输出、词嵌入向量、后向输出构成文档特征图;最后利用多层感知器卷积神经网络(MLPCNN)进行特征提取。在相关数据集上的实验结果表明:相比于CNN,RNN以及CNN与RNN的组合模型,BLSTM_MLPCNN模型具有更优的分类性能。 展开更多
关键词 字符级向量 词向量 卷积神经网络(CNN) 双向长短时记忆神经网络(BLSTM) 多层感知器(mlp) 多层感知器卷积网络(mlpCNN)
在线阅读 下载PDF
基于MLP改进型深度神经网络学习资源推荐算法 被引量:22
6
作者 樊海玮 史双 +3 位作者 张博敏 张艳萍 蔺琪 孙欢 《计算机应用研究》 CSCD 北大核心 2020年第9期2629-2633,共5页
针对在线学习过程中出现的知识过载及传统推荐算法中存在的数据稀疏和冷启动问题,提出了一种基于多层感知机(MLP)的改进型深度神经网络学习资源推荐算法。该算法利用多层感知机对非线性数据处理的优势,将学习者特征和学习资源特征进行... 针对在线学习过程中出现的知识过载及传统推荐算法中存在的数据稀疏和冷启动问题,提出了一种基于多层感知机(MLP)的改进型深度神经网络学习资源推荐算法。该算法利用多层感知机对非线性数据处理的优势,将学习者特征和学习资源特征进行向量相乘的预测方式转换为输入多层感知机的方式,改进了DN-CBR神经网络推荐模型。为验证模型的有效性,以爱课程在线学习平台数据为样本构建数据集,通过对比实验表明,在该数据集上,改进后模型相较于DN-CBR模型在归一化折损累积增益和命中率指标上分别提升了1.2%和3%,有效地提高了模型的推荐性能。 展开更多
关键词 学习资源推荐 深度学习 卷积神经网络 word2vec 多层感知机
在线阅读 下载PDF
基于MLP-ANN和SVM方法的多氯代二苯并呋喃光解半衰期QSPR比较研究 被引量:1
7
作者 于海英 李美萍 郝俊生 《生态毒理学报》 CAS CSCD 北大核心 2020年第4期240-247,共8页
多氯代二苯并呋喃(PCDFs)是全球性污染物之一,光化学降解是其主要的环境降解途径。基于分子二维拓扑结构提出的用于表征化合物结构参数的分子电性距离矢量描述子(MEDV),应用多层感知器神经网络(MLP-ANN)和支持向量机(SVM)对PCDFs在云杉... 多氯代二苯并呋喃(PCDFs)是全球性污染物之一,光化学降解是其主要的环境降解途径。基于分子二维拓扑结构提出的用于表征化合物结构参数的分子电性距离矢量描述子(MEDV),应用多层感知器神经网络(MLP-ANN)和支持向量机(SVM)对PCDFs在云杉针叶和飞灰表面的光解半衰期(t1/2)进行定量结构-性质相关(QSPR)分析,并用交互检验和外部样本对所建模型的稳定性进行了检验。旨在为PCDFs光解机理的QSPR研究提供新思路。结果表明,所建模型均具有良好的稳定性和预测能力,尤以MLP-ANN模型为佳,其建模相关系数(Rcum)、留一法交互检验相关系数(Q LOO)以及外部样本检验相关系数(Q ext)分别为0.850、0.816、0.954(云杉针叶表面)和0.892、0.753、0.897(飞灰表面)。 展开更多
关键词 多氯代二苯并呋喃(PCDFs) 分子电性距离矢量(MEDV) 光解半衰期 QSPR 多层感知器神经网络(mlp-ANN) 支持向量机(SVM)
在线阅读 下载PDF
线性化逐层优化MLP训练算法
8
作者 周志杰 胡光锐 李群 《上海交通大学学报》 EI CAS CSCD 北大核心 1999年第1期15-18,共4页
提出了线性化逐层优化MLP训练算法(LOLL).LOLL采用循环方式逐层对MLP的连接权值进行训练.训练连接权值时用一阶泰勒级数表示神经元的非线性激活函数以实现神经网络的线性化,使MLP的训练问题转化为一个线性问题.... 提出了线性化逐层优化MLP训练算法(LOLL).LOLL采用循环方式逐层对MLP的连接权值进行训练.训练连接权值时用一阶泰勒级数表示神经元的非线性激活函数以实现神经网络的线性化,使MLP的训练问题转化为一个线性问题.同时,为保证神经网络线性化条件不被破坏,LOLL通过在神经网络的误差函数中计入部分线性化误差限制参数的改变幅度,对神经网络的误差函数进行了修正.实验结果显示,LOLL训练算法的速度比传统的BP算法快4倍,用它构成的语音信号非线性预测器有较好的预测性能. 展开更多
关键词 语音信号处理 多层线性感知器 训练算法 mlp
在线阅读 下载PDF
基于VMD与MLP的电机轴承故障检测方法 被引量:9
9
作者 黄晓诚 贺青川 陈文华 《机电工程》 CAS 北大核心 2022年第7期911-918,共8页
针对现有的永磁同步电机(PMSM)轴承故障检测方法准确度低的问题,对PMSM轴承故障表征方法和基于神经网络的检测方法进行了研究,提出了一种PMSM轴承故障归一化表征指标集合的构建方法,和一种基于VMD和MLP的PMSM轴承故障检测方法。首先,采... 针对现有的永磁同步电机(PMSM)轴承故障检测方法准确度低的问题,对PMSM轴承故障表征方法和基于神经网络的检测方法进行了研究,提出了一种PMSM轴承故障归一化表征指标集合的构建方法,和一种基于VMD和MLP的PMSM轴承故障检测方法。首先,采用融合PMSM轴承故障频域特征进行归一化处理的方法,构建了一个PMSM轴承故障表征指标集合;然后,利用优化后的变分模态分解(VMD)方法,对振动信号进行了降噪重构,提取了故障频域特征,并计算出了归一化指标集合;利用基于多层感知器(MLP)的神经网络模型对获取的归一化指标集合进行了训练,得到了一种高准确度PMSM轴承故障检测器;最后,采用了一套可以模拟数控机床进给传动系统的试验测试装置,对基于VMD和MLP的PMSM轴承故障检测方法的有效性和先进性进行了验证。研究结果表明:PMSM轴承故障表征指标集合比现有的指标具有更强的故障表征能力,基于VMD和MLP的PMSM检测方法的平均检测准确度高达95.4%;该结果验证了归一化PMSM轴承故障表征指标集合的先进性,以及基于VMD与MLP的PMSM轴承故障检测方法的有效性。 展开更多
关键词 轴承故障特征提取 永磁同步电机 故障表征 神经网络 变分模态分解 多层感知器 归一化处理
在线阅读 下载PDF
基于锥形追踪和网络分解的NeRF三维重建方法 被引量:1
10
作者 景维鹏 王源锋 李超 《计算机工程》 CAS CSCD 北大核心 2024年第10期334-341,共8页
在计算机视觉领域,神经辐射场(NeRF)是以空间坐标或者时间、相机位姿等其他维度作为输入,通过多层感知机(MLP)网络模拟目标函数,生成颜色、深度等目标标量的过程。NeRF的应用包括对三维场景进行高质量的重建,而其在处理不同分辨率的场... 在计算机视觉领域,神经辐射场(NeRF)是以空间坐标或者时间、相机位姿等其他维度作为输入,通过多层感知机(MLP)网络模拟目标函数,生成颜色、深度等目标标量的过程。NeRF的应用包括对三维场景进行高质量的重建,而其在处理不同分辨率的场景时会产生过度模糊或者伪影的渲染效果,且存在训练耗时较长的问题。为了解决上述问题,提出基于锥形追踪和网络分解的NeRF三维重建方法。使用锥形追踪的方法,为每个像素投射一个圆锥体,并将投射的圆锥体切割成一系列的圆锥台,沿着该圆锥体进行特征化,通过高效渲染抗锯齿的圆锥台来降低模糊或者伪影效果。为了缩短训练时间,使用网络分解的方法,将原始NeRF接收5维数据的神经网络分解为两个网络,有效地缩短训练时间。实验结果表明,在NeRF_Synthetic、LLFF和Multiresolution数据集中,相比于NeRF、F 2-NeRF等方法,所提方法的峰值信噪比(PSNR)提升了14.4%~24.6%,能够重建出更丰富的细节特征,视觉效果更好,且训练时间大幅降低。 展开更多
关键词 神经辐射场 多层感知机 三维重建 神经网络 隐式重建 锥形追踪 网络分解
在线阅读 下载PDF
基于模拟退火法与多层感知机的变压器故障诊断模型及其泛化性能研究 被引量:2
11
作者 高超 王志武 +7 位作者 冯玉辉 杜预 宋兵 高二亚 李乾 饶召伟 邹国平 杨仕友 《高压电器》 CAS CSCD 北大核心 2024年第11期77-85,共9页
为诊断电力变压器内部的潜伏性故障,以溶解气体分析(DGA)数据为特征量,提出了一种基于多层感知机(MLP)的变压器故障诊断模型。以实际运行变压器的故障数据为学习样本,利用模拟退火法实现多层感知机内部节点之间的连接权重优化。以不同... 为诊断电力变压器内部的潜伏性故障,以溶解气体分析(DGA)数据为特征量,提出了一种基于多层感知机(MLP)的变压器故障诊断模型。以实际运行变压器的故障数据为学习样本,利用模拟退火法实现多层感知机内部节点之间的连接权重优化。以不同特征组合作为MLP的输入,对比、分析了MLP诊断故障类型的正确率;研究了MLP拓扑结构、参数正则化等对诊断模型泛化性能的影响。使用训练数据以外的变压器故障数据测试学习完成的诊断模型,获得较高的测试准确率。 展开更多
关键词 人工神经网络 多层感知机 模拟退火 DGA 故障诊断
在线阅读 下载PDF
神经网络和遗传算法在人脸定位中的应用 被引量:8
12
作者 杨前邦 李介谷 《上海交通大学学报》 EI CAS CSCD 北大核心 1998年第9期93-96,共4页
人脸是十分常见的复杂模式,在复杂景物图片中自动找出人脸是很困难的,但是却有着重要意义,因为这同时也是自动人脸识别系统的前提.提出了一个基于多层感知器(MLP)的用遗传算法实现搜索的人脸定位系统,讨论了系统建立的理论基... 人脸是十分常见的复杂模式,在复杂景物图片中自动找出人脸是很困难的,但是却有着重要意义,因为这同时也是自动人脸识别系统的前提.提出了一个基于多层感知器(MLP)的用遗传算法实现搜索的人脸定位系统,讨论了系统建立的理论基础,即MLP直接感知图象和用遗传算法进行快速搜索.实验结果表明,它尤其适合在复杂背景下的低分辨图象中进行操作,鲁棒性好、定位快、适应面宽. 展开更多
关键词 神经网络 遗传算法 人脸定位 mlp 人脸识别
在线阅读 下载PDF
基于堆栈式自动编码器的加密流量识别方法 被引量:19
13
作者 王攀 陈雪娇 《计算机工程》 CAS CSCD 北大核心 2018年第11期140-147,153,共9页
基于浅层机器学习的加密流量识别方法准确率偏低,在特征提取和选择方面耗时耗力。为此,提出一种基于堆栈式自动编码器(SAE)的加密流量识别方法。该方法利用SAE的无监督特性及在数据降维等方面的优势,结合多层感知机(MLP)的有监督分类学... 基于浅层机器学习的加密流量识别方法准确率偏低,在特征提取和选择方面耗时耗力。为此,提出一种基于堆栈式自动编码器(SAE)的加密流量识别方法。该方法利用SAE的无监督特性及在数据降维等方面的优势,结合多层感知机(MLP)的有监督分类学习,实现对加密应用流量的准确识别。考虑到样本数据集的类别不平衡性对分类精度的影响,采用SMOTE过抽样方法对不平衡数据集进行处理。实验结果表明,该方法各项性能指标均优于MLP加密流量识别方法,识别精确度和召回率以及F1-Score均可达到99%。 展开更多
关键词 加密流量识别 深度学习 堆栈式自动编码器 流量分类 多层感知机 卷积神经网络
在线阅读 下载PDF
电容压力传感器的FLANN建模方法 被引量:10
14
作者 钱新 钱春华 《仪器仪表学报》 EI CAS CSCD 北大核心 2003年第2期148-151,共4页
旨在开发一种计算简单的电容压力传感器的模型 ,以便经济、可靠地应用。分析表明采用新型函数链接型神经网络建立的电容压力传感器模型能够精确读出应用压力 ,它是一种能实现输入到输出的高度非线性映射并且运算高效的非线性网络 。
关键词 函数链接型神经网络 电容压力传感器 多层感知器 运算复杂性 建模
在线阅读 下载PDF
多层感知器网络内部判决模式的研究 被引量:4
15
作者 冯天瑾 陈哲 熊建设 《数据采集与处理》 CSCD 2000年第4期408-412,共5页
人工神经网络 ( ANN)内部行为的研究 ,无论是对生物神经系统内部工作机理、ANN理论 ,还是对 ANN应用都有重要意义。本文在作者原有工作基础上加以发展 ,针对多层感知器网络应用于模式识别、分类、函数逼近与参数估计的内部行为 ,作出了... 人工神经网络 ( ANN)内部行为的研究 ,无论是对生物神经系统内部工作机理、ANN理论 ,还是对 ANN应用都有重要意义。本文在作者原有工作基础上加以发展 ,针对多层感知器网络应用于模式识别、分类、函数逼近与参数估计的内部行为 ,作出了明确解释 ;以单隐层结构为典型 ,定义了隐层神经元输出为网络输出量的“(正、负 )内部分量”,隐层权重分布为网络求解问题的“内部判决模式”;并给出了应用这一理论分析的实例。 展开更多
关键词 人工神经网络 多层感知器网络 内部判决模式
在线阅读 下载PDF
近红外光谱技术快速鉴别原料肉掺假的可行性研究 被引量:34
16
作者 杨志敏 丁武 《肉类研究》 2011年第2期25-28,共4页
探讨利用近红外光谱技术结合Fisher两类判别法以及多层感知器(multilayer perceptron,MLP)神经网络快速无损鉴别原料肉是否掺假,并建立多种掺假肉的分类识别模型的可行性。首先近红外结合主成分与Fisher两类判别,建立原料肉与掺假肉的... 探讨利用近红外光谱技术结合Fisher两类判别法以及多层感知器(multilayer perceptron,MLP)神经网络快速无损鉴别原料肉是否掺假,并建立多种掺假肉的分类识别模型的可行性。首先近红外结合主成分与Fisher两类判别,建立原料肉与掺假肉的判别函数,以原料肉与注水肉两类样本的平均重心即两类样本的加权平均数-0.657作为区分原料肉与掺假肉的界限。2 0个验证集样本有两个被误判,总的正确判别率达到9 0%。然后,利用近红外结合主成分与MLP神经网络建立原料肉和3种掺假肉的3层神经网络识别模型,该模型对预测集52个样本的正确识别率达到94.2%。说明利用近红外结合化学计量学方法对原料肉是否掺假及掺假种类进行鉴别是可行的。 展开更多
关键词 近红外 原料肉 掺假肉 Fisher两类判别法 多层感知器(mlp)神经网络
在线阅读 下载PDF
基于神经网络CA/OS-CFAR检测方法 被引量:5
17
作者 王皓 衣同胜 《兵工自动化》 2018年第2期15-18,共4页
在杂波边缘和多目标的复杂环境下,建立性能稳定的自适应检测技术是提高恒虚警率处理能力的关键。针对单元平均恒虚警检测(cell averaging-constant false alarm rate)和有序统计量恒虚警检测(ordered statistic-constant false alarm ra... 在杂波边缘和多目标的复杂环境下,建立性能稳定的自适应检测技术是提高恒虚警率处理能力的关键。针对单元平均恒虚警检测(cell averaging-constant false alarm rate)和有序统计量恒虚警检测(ordered statistic-constant false alarm rate)的优缺点,提出一种基于神经网络的检测方法(cell averaging/ordered statistic-constant false alarm rate)。利用神经网络进行最优检测方法判断,根据选定的检测方法计算出检测阈值。通过训练计算初始阈值,采用神经网络分类并识别输入的类型。将该阈值与CA-CFAR和OS-CFAR计算结果相比较,并选用均匀杂波、多目标和杂波边缘环境的仿真案例进行测试。实验结果表明:该方法可在均值和非均匀的杂波背景中,能有效地进行最优检测方法判断。 展开更多
关键词 转换 神经网络 多层感知器(mlp) 恒虚警率(CFAR) 单元平均数(CA) 有序统计(OS)
在线阅读 下载PDF
基于注意力机制与改进TF-IDF的推荐算法 被引量:7
18
作者 李昆仑 于志波 +1 位作者 翟利娜 赵佳耀 《计算机工程》 CAS CSCD 北大核心 2021年第8期69-77,共9页
针对传统推荐系统主要依赖用户对物品的评分数据而无法学习到用户和项目的深层次特征的问题,提出基于注意力机制与改进TF-IDF的推荐算法(AMITI)。通过将双层注意力机制引入并行的神经网络推荐模型,提高模型对重要特征的挖掘能力。基于... 针对传统推荐系统主要依赖用户对物品的评分数据而无法学习到用户和项目的深层次特征的问题,提出基于注意力机制与改进TF-IDF的推荐算法(AMITI)。通过将双层注意力机制引入并行的神经网络推荐模型,提高模型对重要特征的挖掘能力。基于用户评分及项目类别改进TF-IDF,依据项目类别权重将推荐结果分类以构建不同类型的项目组并完成推荐。实验结果表明,AMITI算法能提高对文本中重要内容的关注度以及项目分配的注意力权重,有效提升推荐精度并在实现项目组推荐后改善推荐效果。 展开更多
关键词 多层感知机 注意力机制 卷积神经网络 推荐算法 深度学习
在线阅读 下载PDF
全自动尿液图像识别技术
19
作者 张赞超 夏顺仁 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2009年第5期832-838,共7页
提出了一种全自动的尿液显微图像处理方法.提出一种新的图像预处理方法,通过拉伸图像中各个像素的灰度值与局部灰度值之间的差来增强图像中目标的边界,通过对局部灰度均值的非线性变换来消除图像中光照不均匀的影响.设计恰当的细胞神经... 提出了一种全自动的尿液显微图像处理方法.提出一种新的图像预处理方法,通过拉伸图像中各个像素的灰度值与局部灰度值之间的差来增强图像中目标的边界,通过对局部灰度均值的非线性变换来消除图像中光照不均匀的影响.设计恰当的细胞神经网络(CNN)模板分割图像,采用形态学操作和对边缘链码序列的操作,分离黏连细胞,得到分割的最终结果.在获取目标区域后,提取目标的各种形态学参数和纹理参数,采用多个多层感知(MLP)网络分层次地对目标进行分类,得到全自动的处理结果.通过对大量临床尿液样本图像的测试,该方法获得了良好的分割和自动识别结果,并已经集成到全自动尿液图像分析系统中应用于临床,取得了良好的效果. 展开更多
关键词 尿液 图像分割 细胞神经网络 图像增强 特征提取 多层感知 多分类器融合
在线阅读 下载PDF
循环流化床入炉垃圾热值软测量 被引量:8
20
作者 尤海辉 马增益 +4 位作者 唐义军 王月兰 郑林 俞钟 吉澄军 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2017年第6期1163-1172,共10页
面对城市生活垃圾(MSW)的热值(HVs)难以实时测量的现状,构建基于减法聚类的自适应模糊神经网络(ANFIS)的入炉垃圾热值软测量模型.针对循环流化床(CFB)生活垃圾焚烧炉的工艺特点,选择模型的输入变量;依据专家经验对样本的热值进行模糊分... 面对城市生活垃圾(MSW)的热值(HVs)难以实时测量的现状,构建基于减法聚类的自适应模糊神经网络(ANFIS)的入炉垃圾热值软测量模型.针对循环流化床(CFB)生活垃圾焚烧炉的工艺特点,选择模型的输入变量;依据专家经验对样本的热值进行模糊分类;利用减法聚类(SC)算法对训练样本进行分析,自适应地确定初始模糊规则和模糊神经网络的初始结构参数;结合最小二乘估计法和误差反向传播算法对模糊神经网络的参数进行学习,构建自适应神经模糊推理系统,完成CFB生活垃圾焚烧锅炉入炉垃圾热值的软测量建模.对比研究BP神经网络、RBF神经网络和支持向量机模型在垃圾热值预测方面的表现,结果表明:基于减法聚类的模糊神经网络模型具有最高的预测精度.预测值和实际垃圾热值的比较结果证明:模糊神经网络模型能够表征垃圾热值的整体变化趋势,可以对循环流化床垃圾焚烧锅炉的运行、控制和管理起到指导作用,并且能够为循环流化床生活垃圾焚烧锅炉的燃烧自动控制(ACC)系统提供可靠的热值反馈信号. 展开更多
关键词 循环流化床(CFB) 焚烧炉 城市生活垃圾热值 模糊神经网络 减法聚类 BP神经网络 径向基函数神经网络 支持向量机(SVM)
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部