外来入侵植物命名实体识别是进一步挖掘入侵植物信息的关键步骤。为解决外来入侵植物领域命名实体识别存在训练数据稀缺、字符级向量表征单一、专业实体识别精度不足等问题,构建了一种基于多特征融合的外来入侵植物细粒度命名实体识别模...外来入侵植物命名实体识别是进一步挖掘入侵植物信息的关键步骤。为解决外来入侵植物领域命名实体识别存在训练数据稀缺、字符级向量表征单一、专业实体识别精度不足等问题,构建了一种基于多特征融合的外来入侵植物细粒度命名实体识别模型(invasive alien plant fine-grained named entity recognition model based on multi-feature fusion,IAPMFF)。首先,采用RoBERTa(Robustly optimized BERT approach,RoBERTa)预训练模型为基础架构,通过构建领域专用词典并通过词汇特征向量融合,增强模型对低频词及专业术语的表征能力;其次,设计双通道特征提取层,利用双向长短时记忆网络(Bi-directional long-short term memory,BiLSTM)提取长序列语义特征,结合卷积残差结构(convolution residual structure,CRS)捕获更多细粒度特征;然后,设计分层特征融合机制,通过多头自注意力机制加权融合两种特征向量,构建多维度语义表征;最后,采用条件随机场(conditional random field,CRF)进行序列解码优化。基于专家知识,构建包含24类细粒度实体标签的外来入侵植物命名实体识别数据集。试验表明,IAP-MFF模型在外来入侵植物命名实体识别数据集上取得91.51%精确率、92.51%召回率和92.01%的F1值,较基线模型分别提升4.40、3.39、3.91个百分点,显著改善了小样本细粒度实体的识别效果。在Weibo、Resume公共数据集上F1值分别达到72.75%和97.15%,表明了模型的泛化性和优越性能。IAP-MFF模型通过融合包含领域知识在内的多种特征,有效提升实体识别精度与泛化能力,为外来入侵植物知识图谱构建奠定技术基础。展开更多
现有短视频推荐方法存在用户短期兴趣表示和短期兴趣代理提取不完全,导致长短期兴趣解纠缠不充分的问题。提出了一种自监督短期兴趣特征增强的短视频推荐模型(short video recommendation model based on self-supervised short-term in...现有短视频推荐方法存在用户短期兴趣表示和短期兴趣代理提取不完全,导致长短期兴趣解纠缠不充分的问题。提出了一种自监督短期兴趣特征增强的短视频推荐模型(short video recommendation model based on self-supervised short-term interest feature enhancement,SSER)。该模型采用自监督的对比学习方法对用户长短期兴趣进行解纠缠,针对短期兴趣表示提取不完全的问题,提出采用扩展循环神经网络(dilated RNN)从非线性的用户交互序列中有效捕捉用户短期兴趣表示;针对短期兴趣代理提取不完全的问题,提出一种多头自注意力机制的短期兴趣代理增强方式,该方式首先使用自注意力机制对短期交互序列嵌入数据进行噪声消除,随后融合从用户序列中提取的短期兴趣普遍特征和突出特征形成融合向量,采用多头自注意力机制从融合向量中提取短期兴趣代理,从而有效增强短期兴趣代理的提取。在KuaiRec短视频数据集上进行了多项实验,结果表明该模型在多个评价指标上优于其他主流方法。展开更多
针对现有的专家推荐算法忽略了用户评论中蕴含的情感表达对专家专长表征的影响,从而导致推荐准确度不高的问题,提出基于双向编码器表示-多头注意力机制(bidirectional encoder representations from transformers-multi-head attention,...针对现有的专家推荐算法忽略了用户评论中蕴含的情感表达对专家专长表征的影响,从而导致推荐准确度不高的问题,提出基于双向编码器表示-多头注意力机制(bidirectional encoder representations from transformers-multi-head attention,BERT-MHA)的深度语义增强专家推荐算法。该算法基于预训练BERT模型,融合MHA机制,自动调整用户评论对专家历史回答问题的情感注意力权重,获取专家动态专长表征,并与静态专长联合以实现专家特征文本的语义增强,表征专家综合专长;通过注意力机制识别用户问题特征;采用多层感知机建模专家综合专长与用户问题间的非线性交互,预测推荐专家的匹配度。利用好大夫网站(haodf.com)的数据进行了不同参数配置及不同算法的对比实验,实验结果表明该算法在准确率(accuracy,ACC)和曲线下的面积(area under curve,AUC)指标下明显优于其他算法,能有效提高在线问答社区的专家推荐准确度。展开更多
文摘外来入侵植物命名实体识别是进一步挖掘入侵植物信息的关键步骤。为解决外来入侵植物领域命名实体识别存在训练数据稀缺、字符级向量表征单一、专业实体识别精度不足等问题,构建了一种基于多特征融合的外来入侵植物细粒度命名实体识别模型(invasive alien plant fine-grained named entity recognition model based on multi-feature fusion,IAPMFF)。首先,采用RoBERTa(Robustly optimized BERT approach,RoBERTa)预训练模型为基础架构,通过构建领域专用词典并通过词汇特征向量融合,增强模型对低频词及专业术语的表征能力;其次,设计双通道特征提取层,利用双向长短时记忆网络(Bi-directional long-short term memory,BiLSTM)提取长序列语义特征,结合卷积残差结构(convolution residual structure,CRS)捕获更多细粒度特征;然后,设计分层特征融合机制,通过多头自注意力机制加权融合两种特征向量,构建多维度语义表征;最后,采用条件随机场(conditional random field,CRF)进行序列解码优化。基于专家知识,构建包含24类细粒度实体标签的外来入侵植物命名实体识别数据集。试验表明,IAP-MFF模型在外来入侵植物命名实体识别数据集上取得91.51%精确率、92.51%召回率和92.01%的F1值,较基线模型分别提升4.40、3.39、3.91个百分点,显著改善了小样本细粒度实体的识别效果。在Weibo、Resume公共数据集上F1值分别达到72.75%和97.15%,表明了模型的泛化性和优越性能。IAP-MFF模型通过融合包含领域知识在内的多种特征,有效提升实体识别精度与泛化能力,为外来入侵植物知识图谱构建奠定技术基础。
文摘现有短视频推荐方法存在用户短期兴趣表示和短期兴趣代理提取不完全,导致长短期兴趣解纠缠不充分的问题。提出了一种自监督短期兴趣特征增强的短视频推荐模型(short video recommendation model based on self-supervised short-term interest feature enhancement,SSER)。该模型采用自监督的对比学习方法对用户长短期兴趣进行解纠缠,针对短期兴趣表示提取不完全的问题,提出采用扩展循环神经网络(dilated RNN)从非线性的用户交互序列中有效捕捉用户短期兴趣表示;针对短期兴趣代理提取不完全的问题,提出一种多头自注意力机制的短期兴趣代理增强方式,该方式首先使用自注意力机制对短期交互序列嵌入数据进行噪声消除,随后融合从用户序列中提取的短期兴趣普遍特征和突出特征形成融合向量,采用多头自注意力机制从融合向量中提取短期兴趣代理,从而有效增强短期兴趣代理的提取。在KuaiRec短视频数据集上进行了多项实验,结果表明该模型在多个评价指标上优于其他主流方法。
文摘针对现有的专家推荐算法忽略了用户评论中蕴含的情感表达对专家专长表征的影响,从而导致推荐准确度不高的问题,提出基于双向编码器表示-多头注意力机制(bidirectional encoder representations from transformers-multi-head attention,BERT-MHA)的深度语义增强专家推荐算法。该算法基于预训练BERT模型,融合MHA机制,自动调整用户评论对专家历史回答问题的情感注意力权重,获取专家动态专长表征,并与静态专长联合以实现专家特征文本的语义增强,表征专家综合专长;通过注意力机制识别用户问题特征;采用多层感知机建模专家综合专长与用户问题间的非线性交互,预测推荐专家的匹配度。利用好大夫网站(haodf.com)的数据进行了不同参数配置及不同算法的对比实验,实验结果表明该算法在准确率(accuracy,ACC)和曲线下的面积(area under curve,AUC)指标下明显优于其他算法,能有效提高在线问答社区的专家推荐准确度。