期刊文献+
共找到646篇文章
< 1 2 33 >
每页显示 20 50 100
Combining the genetic algorithms with artificial neural networks for optimization of board allocating 被引量:2
1
作者 曹军 张怡卓 岳琪 《Journal of Forestry Research》 SCIE CAS CSCD 2003年第1期87-88,共2页
This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in boa... This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum. 展开更多
关键词 Artificial neural network Genetic algorithms Back propagation model (bp model) optimization
在线阅读 下载PDF
Optimization of Processing Parameters of Power Spinning for Bushing Based on Neural Network and Genetic Algorithms 被引量:3
2
作者 Junsheng Zhao Yuantong Gu Zhigang Feng 《Journal of Beijing Institute of Technology》 EI CAS 2019年第3期606-616,共11页
A neural network model of key process parameters and forming quality is developed based on training samples which are obtained from the orthogonal experiment and the finite element numerical simulation. Optimization o... A neural network model of key process parameters and forming quality is developed based on training samples which are obtained from the orthogonal experiment and the finite element numerical simulation. Optimization of the process parameters is conducted using the genetic algorithm (GA). The experimental results have shown that a surface model of the neural network can describe the nonlinear implicit relationship between the parameters of the power spinning process:the wall margin and amount of expansion. It has been found that the process of determining spinning technological parameters can be accelerated using the optimization method developed based on the BP neural network and the genetic algorithm used for the process parameters of power spinning formation. It is undoubtedly beneficial towards engineering applications. 展开更多
关键词 power SPINNING process parameters optimization bp neural network GENETIC algorithms (GA) response surface methodology (RSM)
在线阅读 下载PDF
BP神经网络在离心压缩机叶轮优化中的应用
3
作者 董志强 于根亮 +1 位作者 董逸飞 陈义恒 《汽车实用技术》 2025年第2期56-62,共7页
为了提高离心式压缩机叶轮设计效率并降低计算资源消耗,针对遗传算法优化中计算量大、效率低的问题,提出基于改进粒子群优化算法(IPSO)优化BP神经网络的方法。通过少量计算流体动力学(CFD)仿真样本,训练BP神经网络建立效率与叶轮参数的... 为了提高离心式压缩机叶轮设计效率并降低计算资源消耗,针对遗传算法优化中计算量大、效率低的问题,提出基于改进粒子群优化算法(IPSO)优化BP神经网络的方法。通过少量计算流体动力学(CFD)仿真样本,训练BP神经网络建立效率与叶轮参数的映射关系,结合IPSO优化其参数,同时利用遗传算法(GA)确定叶轮的最佳性能参数。研究表明,改进的IPSO算法通过增强粒子群的动态适应性和全局搜索能力,提高了BP神经网络的预测精度和优化效率。优化后的叶轮等熵效率提高1.34%,多变效率提高1.04%,流量增加10.4%。该方法显著提升了离心式压缩机叶轮的设计效率和性能,为复杂流体机械的优化设计提供了新思路。 展开更多
关键词 离心式压缩机 CFD仿真 叶轮参数优化 bp神经网络 遗传算法
在线阅读 下载PDF
基于改进BP神经网络的烟草收获机械故障诊断研究 被引量:2
4
作者 戴欧阳 胡洪林 《农机化研究》 北大核心 2025年第4期70-76,共7页
烟草收获机械是烟草生产中的重要技术支撑,是提高收获效率的重要保证,但由于烟草收获机械内部结构较为复杂,在使用过程中极易造成机械运行故障。随着大数据及传感器技术的快速发展,基于人工神经网络模型实现机械故障的预测与诊断成为提... 烟草收获机械是烟草生产中的重要技术支撑,是提高收获效率的重要保证,但由于烟草收获机械内部结构较为复杂,在使用过程中极易造成机械运行故障。随着大数据及传感器技术的快速发展,基于人工神经网络模型实现机械故障的预测与诊断成为提高烟草收获机械工作效率的重要技术。目前,主要以BP神经网络模型应用较为广泛,但在模型构建中预测效率低、鲁棒性强。针对以上问题,提出一种改进BP神经网络模型,以烟草收获机械中的齿轮故障诊断为研究对象,构建基于GA-BP神经网络模型的烟草收获机械齿轮故障诊断模型,并通过选取齿轮磨损、胶合、裂纹、断齿和正常齿轮的信号进行试验验证。结果表明:改进后的BP神经网络模型MAPE仅为0.87%,RMSE为1.12,MAE为0.92,MSE为1.19,满足烟草收获生产的实际需要,在模型算法与计算速度方面都得到了很大的提高。 展开更多
关键词 烟草收获 机械故障 遗传算法 bp神经网络 优化模型
在线阅读 下载PDF
基于改进WOA-BP神经网络的电气火灾预警算法
5
作者 颜磊 王国兵 +2 位作者 翁旭峰 刘雪莹 江友华 《电子设计工程》 2025年第1期21-26,共6页
电气火灾是一种严重危害人员安全和财产损失的事件,因此增强对电气火灾的早期预测和预警至关重要。基于提高电气火灾预测准确性的目的,采用了改进鲸鱼算法优化BP神经网络的方法,构建了电气火灾预警模型。使用剩余电流、工作电流电压和... 电气火灾是一种严重危害人员安全和财产损失的事件,因此增强对电气火灾的早期预测和预警至关重要。基于提高电气火灾预测准确性的目的,采用了改进鲸鱼算法优化BP神经网络的方法,构建了电气火灾预警模型。使用剩余电流、工作电流电压和线缆温度作为神经网络的输入特征,结合上述改进方法对权值和阈值进行优化。优化后的参数作为初始参数进行模型训练,用于输出电气火灾的概率。采用电气柜中回路数据进行试验,将预测概率与剩余电流异常持续时间进行模糊化处理,得出火灾决策。研究结果表明,所提模型相关系数达到0.97,相较于传统方法提高了0.08,具有更高的准确性和可靠性。 展开更多
关键词 电气火灾预警 鲸鱼优化算法 bp神经网络 模糊化
在线阅读 下载PDF
基于粒子群优化BP神经网络的核事故源项反演
6
作者 游清悦 曹博 +3 位作者 彭丁萍 李中昊 缪学伟 陈洲亮 《核电子学与探测技术》 北大核心 2025年第3期371-381,共11页
核事故发生后,快速准确地估算源物质的释放速率对于提升核应急响应速度及确保决策的可靠性至关重要。本文选择碘-131(~(131)I)核素的释放速率作为源项反演的目标值,利用课题组开发的放射性核素大气扩散模拟程序RADC生成神经网络训练所... 核事故发生后,快速准确地估算源物质的释放速率对于提升核应急响应速度及确保决策的可靠性至关重要。本文选择碘-131(~(131)I)核素的释放速率作为源项反演的目标值,利用课题组开发的放射性核素大气扩散模拟程序RADC生成神经网络训练所需的数据集。利用Matlab构建了粒子群算法(Particle Swarm Optimization,PSO)优化误差反向传播(Back Propagation,BP)神经网络的核事故源项反演模型,同时考虑了粒子群算法中超参数和适应度函数的不同对算法优化性能的影响。结果表明:PSOBP模型源项反演测试结果的平均绝对百分比误差为2.14%,平均绝对误差为0.011437,均方差为0.000685,各个评价指标明显优于BP神经网络,验证了该模型的可行性,有助于快速核应急响应。 展开更多
关键词 源项反演 bp神经网络 粒子群优化 参数优化 适应度函数
在线阅读 下载PDF
基于SSA-BP神经网络的无人机发射参数择优
7
作者 贾华宇 郑会龙 +1 位作者 周洪 张谦 《华南理工大学学报(自然科学版)》 北大核心 2025年第4期90-101,共12页
火箭助推零长发射是无人机发射的重要形式,发射角度、助推器夹角、助推器推力等发射参数的选取直接关系到无人机发射任务的成败。无人机火箭助推零长发射在设计阶段借助工程经验选取发射角度、助推器夹角、助推器推力等关键参数时,存在... 火箭助推零长发射是无人机发射的重要形式,发射角度、助推器夹角、助推器推力等发射参数的选取直接关系到无人机发射任务的成败。无人机火箭助推零长发射在设计阶段借助工程经验选取发射角度、助推器夹角、助推器推力等关键参数时,存在发射参数迭代择优周期长、设计交互性差、容易造成无人机飞行姿态失稳的问题。该文以某无人机为研究对象,对其发射阶段进行动力学及运动学建模,构建了六自由度非线性模型,基于QT/C++软件编制无人机发射弹道参数化仿真软件,并结合某无人机真实发射试验数据,验证该发射弹道仿真软件的有效性。同时,为解决发射参数自主择优问题,在反向传播(BP)神经网络参数预测模型的基础上引入麻雀搜索算法(SSA)、粒子群优化算法(PSO)、遗传算法(GA)优化模块,提出基于SSA优化BP神经网络的无人机发射参数寻优方法,消除BP神经网络在参数预测过程中存在的过拟合及局部最优效应,对参数预测结果求绝对误差(MAE)、平均百分百误差(MAPE)、均方根误差(RMSE),综合评估SSA-BP对发射参数预测的优越性,并通过发射弹道校核验证发射参数选取的合理性。结果表明,SSA-BP模型对发射参数的预测精度最高、鲁棒性最好,可为无人机发射分系统工程设计阶段的发射参数自主择优选取提供设计依据。 展开更多
关键词 无人机发射 麻雀搜索算法 bp神经网络 参数寻优 建模仿真
在线阅读 下载PDF
面向冷弯型钢构件弹性屈曲临界荷载预测的BP神经网络训练算法比选
8
作者 戴宜凌 王少快 尹凌峰 《应用数学和力学》 北大核心 2025年第2期129-141,共13页
弹性屈曲临界荷载是准确评价冷弯型钢构件承载力的重要指标.利用人工神经网络(artificial neural networks,ANNs)模型对冷弯C型截面轴压构件的屈曲临界载荷进行了预测,将影响屈曲的几何参数和有限条法所得的计算结果作为数据集,对神经... 弹性屈曲临界荷载是准确评价冷弯型钢构件承载力的重要指标.利用人工神经网络(artificial neural networks,ANNs)模型对冷弯C型截面轴压构件的屈曲临界载荷进行了预测,将影响屈曲的几何参数和有限条法所得的计算结果作为数据集,对神经网络模型进行了训练、验证和测试.基于最优化理论,采用6种不同的优化算法进行了模型的训练,并比较了不同算法的网络模型性能.通过随机网格搜索确定最优超参数,使用3种统计参数来评估训练后的人工神经网络的性能,以得到最适合预测屈曲临界荷载的神经网络模型.结果表明:Levenberg-Marquardt(L-M)算法在非线性最小二乘问题上相较于其他算法具有更高的准确性,多次训练后,L-M算法使模型预测误差非常小,而其他算法在准确度上不及L-M算法. 展开更多
关键词 bp神经网络 最优化理论 弹性屈曲临界荷载 冷弯型钢 非线性最小二乘
在线阅读 下载PDF
滑坡位移CEEMD-CIWOA-BP预测模型
9
作者 余国强 侯克鹏 孙华芬 《有色金属(矿山部分)》 2025年第1期106-114,142,共10页
为了直观地判断滑坡因素与周期项位移间的因果关系,并提高滑坡位移预测模型的准确性,以某矿山滑坡位移监测数据为例,建立了考虑时滞的CEEMD-CIWOA-BP滑坡位移预测模型。首先利用CEEMD方法将滑坡位移监测数据分解成多个信号分量及res分量... 为了直观地判断滑坡因素与周期项位移间的因果关系,并提高滑坡位移预测模型的准确性,以某矿山滑坡位移监测数据为例,建立了考虑时滞的CEEMD-CIWOA-BP滑坡位移预测模型。首先利用CEEMD方法将滑坡位移监测数据分解成多个信号分量及res分量,将其重构为滑坡趋势项及周期项位移;然后引入Cubic混沌映射及惯性权重因子对WOA算法优化,利用优化的WOA算法对BP神经网络模型的连接权重及偏置项进行赋值;考虑到降雨及库水位对滑坡位移的时滞效应,利用Granger因果检验法确定降雨及库水位与周期位移的因果关系并引用MIC法确定时滞期数,使用CIWOA-BP模型分别对周期位移进行预测;最后,将各分量结果叠加得到滑坡位移累计预测值,对模型的预测精度进行评价。结果显示,本文提出的CEEMD-CIWOA-BP模型的性能优于其他模型,验证了所建模型的可行性。本文提出的模型能为滑坡灾害预警预报提供一定的参考。 展开更多
关键词 滑坡位移 互补集合经验模态分解 bp神经网络 改进鲸鱼优化算法 时间序列
在线阅读 下载PDF
Fault Diagnosis of Analog Circuit Based on PSO and BP Neural Network 被引量:1
10
作者 JI Mengran CHEN Gang +1 位作者 YANG Qing ZHANG Jinge 《沈阳理工大学学报》 CAS 2014年第5期90-94,共5页
In order to improve the speed and accuracy of analog circuit fault diagnosis,using Back Propagation Neural Network(BPNN),a new method is proposed based on Particle Swarm Optimization(PSO)to adjust weights of BP neural... In order to improve the speed and accuracy of analog circuit fault diagnosis,using Back Propagation Neural Network(BPNN),a new method is proposed based on Particle Swarm Optimization(PSO)to adjust weights of BP neural network.The model can not only overcome the limitations of the slow convergence and the local extreme values by basic BP algorithm,but also improve the learning ability and generalization ability with a higher precision.The response signals of analog circuit is preprocessed by Wavelet Packet Transform(WPT)as the fault feature.The simulation result shows that the proposed method has higher diagnostic accuracy and faster convergence speed,which is effective for fault location. 展开更多
关键词 错误判断 bp神经式网络 颗粒群最佳化 模拟线路
在线阅读 下载PDF
基于IWOA-BP的火控计算机电源模块故障诊断方法
11
作者 邵浩冬 李英顺 +1 位作者 王德彪 佟维妍 《兵器装备工程学报》 北大核心 2025年第3期224-231,共8页
火控计算机是火控系统的核心,其对于火控系统的正常运行发挥着重要作用,因此对坦克火控计算机电源模块进行故障诊断是一项很重要的任务。为了提高诊断准确率和效率,引入了Sine-Tent-Cosine混沌映射和自适应惯性权重对原始的鲸鱼算法(WOA... 火控计算机是火控系统的核心,其对于火控系统的正常运行发挥着重要作用,因此对坦克火控计算机电源模块进行故障诊断是一项很重要的任务。为了提高诊断准确率和效率,引入了Sine-Tent-Cosine混沌映射和自适应惯性权重对原始的鲸鱼算法(WOA)进行改进与优化,利用改进后的算法对BP神经网络的权重、阈值进行参数寻优,构建了IWOA-BP火控计算机电源模块故障诊断模型,与PSO-BP、ANT-BP、WOA-BP几种诊断模型进行实验对比。多次实验结果表明:改进后的IWOA-BP模型在4种模型中效率最高,运行时间仅为8.72 s,在对火控计算机电源模块的5种故障进行诊断时,该模型的平均准确率达到了96.4%,相较于PSO-BP、ANT-BP和WOA-BP几种诊断模型准确率分别提升了3.65%、5.7%和5.93%。 展开更多
关键词 故障诊断 鲸鱼优化算法 Sine-Tent-Cosine混沌映射 自适应惯性权重 bp神经网络
在线阅读 下载PDF
基于鲸鱼优化算法优化BP的仓储温度预测及可视化研究
12
作者 姚晨静 《粮食与饲料工业》 2025年第1期52-56,共5页
结合粮食仓储的智能化需求,提出一种基于改进BP神经网络的仓储温度预测及可视化方法。具体采用鲸鱼优化算法对BP神经网络进行改进,以提高BP神经网络的全局搜索能力;然后基于改进BP神经网络对粮食仓储内部温度进行预测;最后根据预测结果... 结合粮食仓储的智能化需求,提出一种基于改进BP神经网络的仓储温度预测及可视化方法。具体采用鲸鱼优化算法对BP神经网络进行改进,以提高BP神经网络的全局搜索能力;然后基于改进BP神经网络对粮食仓储内部温度进行预测;最后根据预测结果,采用OriginPro软件对数据进行可视化展示。测试结果表明:在训练集上,未经过改进的BP神经网络经过550次迭代后才开始收敛,且最终的函数损失值维持在0.3左右,ACC值维持在73%左右;改进后的BP神经网络则经过120次迭代后开始收敛,函数损失值维持在0.08左右,ACC维持在94%左右。在测试集上,改进BP神经网络的预测准确率为94.59%,MAE值为0.07,表明改进BP神经网络的仓储温度预测精度更高,且通过OriginPro软件实现了温度预测结果的可视化。由此得出,研究提出的预测及可视化方法可行,可为粮食仓储提供借鉴。 展开更多
关键词 bp神经网络 仓储温度 可视化 鲸鱼优化算法
在线阅读 下载PDF
基于BP神经网络的用户侧用电负荷自适应预测方法
13
作者 张传远 陈亚天 +2 位作者 高振伟 齐永忠 杨夏祎 《信息技术》 2025年第2期187-192,共6页
为了提高电力系统运行的可靠性和稳定性,准确预测用户侧用电负荷,提出了基于BP神经网络的用户侧用电负荷自适应预测方法。通过构建用户侧用电负荷数据分析模型,采集用户侧用电负荷数据并进行数据分类和分析。使用线性内插方法,对用户侧... 为了提高电力系统运行的可靠性和稳定性,准确预测用户侧用电负荷,提出了基于BP神经网络的用户侧用电负荷自适应预测方法。通过构建用户侧用电负荷数据分析模型,采集用户侧用电负荷数据并进行数据分类和分析。使用线性内插方法,对用户侧用电负荷残缺数据和误差数据进行修补。基于BP神经网络,采用粒子群算法对BP神经网络的初始权重和门限进行优化,实现用户侧用电负荷自适应预测。实验结果表明,文中方法的负荷预测结果更加接近于实际值,能够准确预测用户侧用电负荷。 展开更多
关键词 bp神经网络 用户侧 用电负荷 自适应预测 粒子群算法
在线阅读 下载PDF
基于粒子群优化BP神经网络的水质监测方法研究
14
作者 闫佳 刘倩男 刘诚 《现代信息科技》 2025年第3期153-156,163,共5页
近年来,随着人工智能应用范围的逐渐扩大,各行各业都与人工智能存在或多或少的联系。传统的水质监测方法包括人工采样与实验室分析、现场检测和遥感技术等,这些方法存在时效性差、覆盖范围有限、数据不连续且成本高昂等问题。神经网络... 近年来,随着人工智能应用范围的逐渐扩大,各行各业都与人工智能存在或多或少的联系。传统的水质监测方法包括人工采样与实验室分析、现场检测和遥感技术等,这些方法存在时效性差、覆盖范围有限、数据不连续且成本高昂等问题。神经网络的出现大幅提升了传统技术在预测和数据处理方面的效果。在此基础上,通过粒子群算法对BP神经网络进行优化(PSO-BP),结果显示优化后的模型具有更高的准确度和更小的误差。这不仅进一步提高了水质监测的准确性和时效性,还显著降低了监测成本,节省了人力、物力和财力,为水质监测提供了一种新的技术手段。 展开更多
关键词 人工智能 水质监测 粒子群算法 bp神经网络
在线阅读 下载PDF
基于优化BPNN的FPGA内嵌高速接口总抖动预测方法
15
作者 叶翔宇 林晓会 +1 位作者 丁江乔 解维坤 《电子科技》 2025年第2期70-77,共8页
针对ATE(Automated Test Equipment)无法直接测试出FPGA(Field-Programmable Gate Array)内嵌高速接口总抖动的问题,文中提出了一种基于优化BPNN(Back Propagation Neural Network)对高速接口进行总抖动预测的方法。利用GA(Genetic Algo... 针对ATE(Automated Test Equipment)无法直接测试出FPGA(Field-Programmable Gate Array)内嵌高速接口总抖动的问题,文中提出了一种基于优化BPNN(Back Propagation Neural Network)对高速接口进行总抖动预测的方法。利用GA(Genetic Algorithm)较强的全局搜索能力优化BPNN的初始权重和寻参过程,组成了GA_BP神经网络,提高了预测总抖动的准确率。利用MATLAB软件建立GA_BP总抖动预测模型,对筛选后的抖动数据进行预测优化。实验结果表明,与未优化的BP神经网络和传统Elman神经网络预测模型相比,GA_BP预测模型的均方误差分别下降了75.5%、88.0%,迭代次数分别减少了68.0%、59.8%,说明GA_BP模型预测准确率和迭代效率更高,可被应用于ATE中进行总抖动量产测试。 展开更多
关键词 高速接口 总抖动预测 优化bp神经网络 遗传算法 Grubbs准则 FPGA 均方误差 量产测试
在线阅读 下载PDF
基于BP神经网络的测量设备无关协议参数预测 被引量:1
16
作者 周江平 周媛媛 +1 位作者 周学军 李洁琼 《电子科技大学学报》 EI CAS CSCD 北大核心 2024年第4期611-616,共6页
针对传统参数优化方法计算开销大,不能满足实时性要求高、计算量大等应用场景的问题,结合当今主流的机器学习方法,提出了一种改进的基于BP神经网络的参数优化方法,利用本地搜索算法的数据训练网络并对参数进行预测,替代传统的查找算法,... 针对传统参数优化方法计算开销大,不能满足实时性要求高、计算量大等应用场景的问题,结合当今主流的机器学习方法,提出了一种改进的基于BP神经网络的参数优化方法,利用本地搜索算法的数据训练网络并对参数进行预测,替代传统的查找算法,从而获得更好的实时性和更低的计算复杂度,随后与基于随机森林和XGBoost的方法进行了比较。仿真结果表明,BP神经网络预测所得各参数的均方误差数量级为10^(-6)或更小,由该参数计算所得密钥生成率与最优密钥生成率比值的均值为0.998 8,且该应用中BP神经网络相对随机森林和XGBoost具有更好的预测性能。 展开更多
关键词 量子光学 量子密钥分发 bp神经网络 参数优化 测量设备无关
在线阅读 下载PDF
交通荷载下煤矸石路基填料累积变形PSO-BP神经网络预测模型 被引量:4
17
作者 张宗堂 肖天祥 +2 位作者 高文华 杨洋 衣利伟 《水利水电科技进展》 CSCD 北大核心 2024年第2期87-91,共5页
基于煤矸石路基填料大型动三轴试验结果,采用灰色关联分析法分析累积变形影响因子,确定了围压、压实度、级配参数、循环荷载振动次数4个特征参数。引入PSO算法对BP神经网络的权重、阈值进行全局寻优并赋值,提出了一种煤矸石路基填料累... 基于煤矸石路基填料大型动三轴试验结果,采用灰色关联分析法分析累积变形影响因子,确定了围压、压实度、级配参数、循环荷载振动次数4个特征参数。引入PSO算法对BP神经网络的权重、阈值进行全局寻优并赋值,提出了一种煤矸石路基填料累积变形PSO-BP神经网络预测模型。与传统BP神经网络模型对比结果验证了该预测模型的可行性和优越性,并通过不同学习程度下模型的预测效果分析了模型的泛化能力,证明了模型的预测潜力。 展开更多
关键词 煤矸石路基 累积变形预测 灰色关联分析 粒子群算法 bp神经网络
在线阅读 下载PDF
基于多特征参数的GA-WOA-BP火灾概率预测模型研究 被引量:1
18
作者 刘全义 吴孟洋 +1 位作者 艾洪舟 朱培 《消防科学与技术》 CAS 北大核心 2024年第6期820-825,共6页
为进一步提升火灾概率预测的准确率,针对BP神经网络在拟合过程中探测精度低、泛化能力差的问题,提出一种基于多特征参数的GA-WOA-BP火灾概率预测模型。首先通过试验采集了榉木、棉绳阴燃、明燃时的火灾特征参量,计算后得到了相应的火灾... 为进一步提升火灾概率预测的准确率,针对BP神经网络在拟合过程中探测精度低、泛化能力差的问题,提出一种基于多特征参数的GA-WOA-BP火灾概率预测模型。首先通过试验采集了榉木、棉绳阴燃、明燃时的火灾特征参量,计算后得到了相应的火灾类型发生概率;其次通过遗传算法优化BP神经网络的隐藏层结构,鲸鱼优化算法优化BP神经网络的初始权重,构建了GA-WOA-BP模型,提高融合算法的拟合能力。最后,以多特征火灾参数作为模型输入,以不同类型火灾发生概率作为输出完成火灾概率的预测。结果表明,相比单纯BP神经网络,基于多特征参数的GA-WOA-BP火灾概率预测模型具有更好的预测性能,其评价指标RMSE、MAE、R2分别为0.020 22、0.014 33和0.992 31,能为火灾概率预测提供数据参考。 展开更多
关键词 多特征参数 鲸鱼优化算法 遗传算法 火灾概率预测 bp神经网络
在线阅读 下载PDF
基于GM(1,1)-IPSO-BP的重载铁路小半径曲线钢轨磨耗预测方法
19
作者 张斌 高玉祥 +2 位作者 陈再刚 王开云 时瑾 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2024年第11期115-122,131,共9页
为实现重载铁路小半径曲线段钢轨磨耗量的精准预测,提出一种非等间距灰色模型GM(1,1)与改进粒子群算法(IPSO)优化BP神经网络相结合的钢轨磨耗预测方法。首先,根据积分原理优化GM(1,1)非等间距模型的背景值计算方法,基于改进的模型得到... 为实现重载铁路小半径曲线段钢轨磨耗量的精准预测,提出一种非等间距灰色模型GM(1,1)与改进粒子群算法(IPSO)优化BP神经网络相结合的钢轨磨耗预测方法。首先,根据积分原理优化GM(1,1)非等间距模型的背景值计算方法,基于改进的模型得到实测磨耗序列的初步预测结果;然后,利用IPSO算法对BP神经网络的权值和阈值进行自动寻优,对GM(1,1)模型初步预测序列的残差进行校正;最后,将优化后的两种模型组合构建基于GM(1,1)-IPSO-BP的重载铁路小半径曲线地段钢轨磨耗量预测模型。以某重载铁路桥上半径400 m曲线为例,利用长期的磨耗监测数据进行方法的适用性分析,研究结果表明:GM(1,1)-IPSO-BP模型克服了磨耗数据的非线性、随机性特征对计算结果的影响,预测精度优于单独使用GM(1,1)、IPSO-BP模型;背景值优化后的GM(1,1)模型预测准确性更可靠;IPSO优化算法提高了BP神经网络计算的精度和速度;预测结果和实测数据之间的相对误差不大于4%;在预测区间上的绝对误差小于0.4 mm,运用该方法能够较准确地得到钢轨磨耗的发展规律。研究结果可为重载铁路小半径曲线钢轨的精准维修和科学使用提供参考。 展开更多
关键词 钢轨磨耗 GM(1 1)模型 小半径曲线 bp神经网络 重载铁路 粒子群算法
在线阅读 下载PDF
基于MIV-PSO-BPNN的掘进面风温预测方法
20
作者 程磊 李正健 +2 位作者 贺智勇 史浩镕 王鑫 《河南理工大学学报(自然科学版)》 CAS 北大核心 2024年第6期11-17,共7页
目的为防治矿井热害,解决矿井掘进面风温预测问题,方法提出一种MIV算法优化的PSO-BPNN预测模型。通过利用MIV算法确定模型的输入变量,以BP网络建模,使用粒子群优化算法结合BP神经网络实现掘进工作面风流温度的预测,得到预测结果并与BPN... 目的为防治矿井热害,解决矿井掘进面风温预测问题,方法提出一种MIV算法优化的PSO-BPNN预测模型。通过利用MIV算法确定模型的输入变量,以BP网络建模,使用粒子群优化算法结合BP神经网络实现掘进工作面风流温度的预测,得到预测结果并与BPNN模型、PSO-BPNN模型、SVR模型相比较。结果结果表明:MIV-PSO-BPNN预测模型的相对误差为-0.47%~1.81%,分别优于PSO-BPNN、BPNN、SVR预测模型的-3.96%~1.93%,-5.54%~2.98%,-2.16%~2.95%,预测模型的误差为-0.1~0.5℃,表明预测值与实测值基本一致;与BPNN预测模型、PSO-BPNN预测模型、SVR预测模型相比,MIV-PSO-BPNN预测模型的预测结果平均绝对误差分别减少65%,54%,50%,均方误差分别减少88%,78%,69%,表明该预测模型的预测效果优于其他3种模型。结论所提模型适用于矿井掘进工作面风温的预测。 展开更多
关键词 bp神经网络 MIV算法 粒子群优化算法 风温预测 算法优化
在线阅读 下载PDF
上一页 1 2 33 下一页 到第
使用帮助 返回顶部