A novel particle/metal-based monolithic catalysts dual-bed reactor with beds-interspace supplementary oxygen is constructed comprising of the upper-layer 5 wt%Na2WO4-2 wt%Mn/SiO2 particle catalyst and the under-layer ...A novel particle/metal-based monolithic catalysts dual-bed reactor with beds-interspace supplementary oxygen is constructed comprising of the upper-layer 5 wt%Na2WO4-2 wt%Mn/SiO2 particle catalyst and the under-layer 3 wt%Ce-5 wt%Na2WO4-2 wt%Mn/SBA-15/Al2O3/FeCrA1 metal-based monolithic catalyst as well as a side tube in the interspaces of two layers for supplementing 02. The reaction performance of oxidative coupling of methane (OCM) in the dual-bed reactor system is evaluated. The effects of the reaction parameters such as feed CH4/O2 ratio, reaction temperature and side tube feed 02 flowrate on the catalytic performance are investigated. The results indicate that the suggested mode of dual-bed reactor exhibits an excellent performance for OCM. CH4 conversion of 33.2%, C2H4 selectivity of 46.5% and C2 yield of 22.5% could be obtained, which have been increased by 6.4%, 4.1% and 5.5%, respectively, as compared with 5 wt%Na2WO4-2 wt%Mn/SiO2 particle catalyst in a single-bed reactor and increased by 10.7%, 31.9% and 17.7%, respectively, as compared with 3 wt%Ce-5 wt%Na2WO4-2 wt%Mn/SBA-15/Al2O3/FeCrA1 metal-based monolithic catalyst in a single-bed reactor. The effective promotion of OCM performance in the reactor would supply a valuable reference for the industrialization of OCM process.展开更多
A dual-bed reactor was constructed comprising of a 5%Na2WO4-2%Mn/SiO2 particle catalyst and a 4%Ce-5%Na2WO4-2%Mn/SiO2 /cordierite monolithic catalyst.The reaction performance of the oxidative coupling of methane (OCM...A dual-bed reactor was constructed comprising of a 5%Na2WO4-2%Mn/SiO2 particle catalyst and a 4%Ce-5%Na2WO4-2%Mn/SiO2 /cordierite monolithic catalyst.The reaction performance of the oxidative coupling of methane (OCM) over the dual-bed reactor system was evaluated.The effects of the bed height and operation mode,as well as the reaction parameters such as reaction temperature,CH4/O2 ratio and flowrate of feed gas,on the catalytic performance were investigated.The results indicated that the suggested dual-bed reactor exhibited a good performance for the OCM reaction when the feed gases firstly passed through the particle catalyst bed and then to the monolithic catalyst bed.A CH4 conversion of 38.2% and a C2H4 selectivity of 43.3% could be obtained using the dual-bed reactor with a particle catalyst bed height of 10 mm and a monolithic catalyst bed height of 50 mm.Both the CH4 conversion and C2H4 selectivity have increased by 2.5% and 12.8%,respectively,as compared with the 5%Na2WO4-2%Mn/SiO2 particle catalyst in a conventional single-bed reactor and by 12.9% and 23.0%,respectively,as compared with the 4%Ce-5%Na2WO4-2%Mn/SiO2 /cordierite monolithic catalyst in a single-bed reactor.The catalytic performance of the OCM in the dual-bed reactor system has been improved remarkably.展开更多
A series of CoxMgxO/Al2O3/FeCrAl catalysts (x=0-1) were prepared. The structures of the catalysts were characterized using XRD, SEM, and TPR analyses. The catalytic activity of the catalysts for methane combustion w...A series of CoxMgxO/Al2O3/FeCrAl catalysts (x=0-1) were prepared. The structures of the catalysts were characterized using XRD, SEM, and TPR analyses. The catalytic activity of the catalysts for methane combustion was evaluated in a continuous flow microreactor. The results indicated that the active washcoats adhered well on the FeCrAl foils. The phases in the catalysts were Co--xMgxO solid solutions, α-Al2O3, and γ-Al2O3. The surface particle size of the catalysts varied with variations in the molar ratios of Co to Mg. The Co component of the Co1_xMgxO/Al2O3/FeCrAl catalysts played an important role in the catalytic activity for methane combustion. In the Co1-xMgxO/AluO3/FeCrAl series catalyst (x=0.2-0.8), the catalytic activity in terms of x was in the order of 0.5〉0.2〉0.8 under the experimental conditions. The presence of Mg in these catalysts could promote the thermal stability to a large extent. There were strong interactions between the Co1-xMgxO oxides and the AluO3/FeCrAl supports.展开更多
This study focused on measurement of the autothermal reforming of biogas over a Ni based monolithic catalyst. The effects of the steam/CH4 (S/C) ratio, O2/CH4 (O2/C) ratio and temperature were investigated. The CH...This study focused on measurement of the autothermal reforming of biogas over a Ni based monolithic catalyst. The effects of the steam/CH4 (S/C) ratio, O2/CH4 (O2/C) ratio and temperature were investigated. The CH4 conversions were higher under all examined temperatures than the equilibrium conversion calculated using the blank outlet temperature, because the catalyst layer was heated by the exothermic catalytic partial oxidation reaction. The CH 4conversion increased with increasing O2/C ratio. Moreover, the CH4 conversion was higher than the equilibrium conversion calculated using the blank outlet temperature for O2/C〉0.42 and reached about 100% at O2/C=0.55. However, the hydrogen concentration decreased for O2/C〉0.45 because hydrogen was combusted to steam in the presence of excess oxygen. On the other hand, the hydrogen and CO2 concentrations increased and the CO concentration decreased with increasing SIC ratio. As a result, it was found that the highest hydrogen concentrations and CH4 conversions were attained at the O2/C ratios of 0.45-0.55 and the SIC ratios of 1.5-2.5. Moreover, the H2/CO ratio could also be controlled in the range from about 2 to 3.5 to give at least 90% CH4 conversion, by regulating the O2/C or S/C ratios.展开更多
Using solar energy to produce syngas via the endothermic reforming of methane has been extensively inves- tigated at the laboratory- and pilot plant-scales as a promising method of storing solar energy. One of the cha...Using solar energy to produce syngas via the endothermic reforming of methane has been extensively inves- tigated at the laboratory- and pilot plant-scales as a promising method of storing solar energy. One of the challenges to scaling up this process in a tubular reformer is to improve the reactor's performance, which is limited by mass and heat transfer issues. High thermal conductivity Cu foam was therefore used as a sub-strate to improve the catalyst's thermal conductivity during solar reforming. We also developed a method to coat the foam with the catalytically active component NiMg3AlOx. The Cu foam-based NiMg3AlOx performs better than catalysts supported on SiSiC foam, which is currently used as a substrate for solar-reforming cat- alysts, at high gas hourly space velocity (≥400,000 mL/(g.h)) or at low reaction temperatures (≤ 720 ℃). The presence of a γ-Al2O3 intermediate layer improves the adhesion between the catalyst and substrate as well as the catalytic activity.展开更多
基金supported by the National Basic Research Program of China (Project No. 2005CB221405)
文摘A novel particle/metal-based monolithic catalysts dual-bed reactor with beds-interspace supplementary oxygen is constructed comprising of the upper-layer 5 wt%Na2WO4-2 wt%Mn/SiO2 particle catalyst and the under-layer 3 wt%Ce-5 wt%Na2WO4-2 wt%Mn/SBA-15/Al2O3/FeCrA1 metal-based monolithic catalyst as well as a side tube in the interspaces of two layers for supplementing 02. The reaction performance of oxidative coupling of methane (OCM) in the dual-bed reactor system is evaluated. The effects of the reaction parameters such as feed CH4/O2 ratio, reaction temperature and side tube feed 02 flowrate on the catalytic performance are investigated. The results indicate that the suggested mode of dual-bed reactor exhibits an excellent performance for OCM. CH4 conversion of 33.2%, C2H4 selectivity of 46.5% and C2 yield of 22.5% could be obtained, which have been increased by 6.4%, 4.1% and 5.5%, respectively, as compared with 5 wt%Na2WO4-2 wt%Mn/SiO2 particle catalyst in a single-bed reactor and increased by 10.7%, 31.9% and 17.7%, respectively, as compared with 3 wt%Ce-5 wt%Na2WO4-2 wt%Mn/SBA-15/Al2O3/FeCrA1 metal-based monolithic catalyst in a single-bed reactor. The effective promotion of OCM performance in the reactor would supply a valuable reference for the industrialization of OCM process.
基金supported by the National Basic Research Program of China(Project No. 2005CB221405)
文摘A dual-bed reactor was constructed comprising of a 5%Na2WO4-2%Mn/SiO2 particle catalyst and a 4%Ce-5%Na2WO4-2%Mn/SiO2 /cordierite monolithic catalyst.The reaction performance of the oxidative coupling of methane (OCM) over the dual-bed reactor system was evaluated.The effects of the bed height and operation mode,as well as the reaction parameters such as reaction temperature,CH4/O2 ratio and flowrate of feed gas,on the catalytic performance were investigated.The results indicated that the suggested dual-bed reactor exhibited a good performance for the OCM reaction when the feed gases firstly passed through the particle catalyst bed and then to the monolithic catalyst bed.A CH4 conversion of 38.2% and a C2H4 selectivity of 43.3% could be obtained using the dual-bed reactor with a particle catalyst bed height of 10 mm and a monolithic catalyst bed height of 50 mm.Both the CH4 conversion and C2H4 selectivity have increased by 2.5% and 12.8%,respectively,as compared with the 5%Na2WO4-2%Mn/SiO2 particle catalyst in a conventional single-bed reactor and by 12.9% and 23.0%,respectively,as compared with the 4%Ce-5%Na2WO4-2%Mn/SiO2 /cordierite monolithic catalyst in a single-bed reactor.The catalytic performance of the OCM in the dual-bed reactor system has been improved remarkably.
基金Financial funds from the Chinese Natural Science Foundation (Project No.: 20376005) the Specialized Research Fund for the Doctoral Program of Higher Education (Project No.: 20030010002) are gratefully acknowledged.
文摘A series of CoxMgxO/Al2O3/FeCrAl catalysts (x=0-1) were prepared. The structures of the catalysts were characterized using XRD, SEM, and TPR analyses. The catalytic activity of the catalysts for methane combustion was evaluated in a continuous flow microreactor. The results indicated that the active washcoats adhered well on the FeCrAl foils. The phases in the catalysts were Co--xMgxO solid solutions, α-Al2O3, and γ-Al2O3. The surface particle size of the catalysts varied with variations in the molar ratios of Co to Mg. The Co component of the Co1_xMgxO/Al2O3/FeCrAl catalysts played an important role in the catalytic activity for methane combustion. In the Co1-xMgxO/AluO3/FeCrAl series catalyst (x=0.2-0.8), the catalytic activity in terms of x was in the order of 0.5〉0.2〉0.8 under the experimental conditions. The presence of Mg in these catalysts could promote the thermal stability to a large extent. There were strong interactions between the Co1-xMgxO oxides and the AluO3/FeCrAl supports.
基金supported by the greenhouse gas mitigation technology development program"Technology Developments on Hydrogen Production from Biomass and Waste"organized by the National Institute for Environmental Studies(NIES)for 2002~2008 in trust from the Ministry of the Environment(MOE)
文摘This study focused on measurement of the autothermal reforming of biogas over a Ni based monolithic catalyst. The effects of the steam/CH4 (S/C) ratio, O2/CH4 (O2/C) ratio and temperature were investigated. The CH4 conversions were higher under all examined temperatures than the equilibrium conversion calculated using the blank outlet temperature, because the catalyst layer was heated by the exothermic catalytic partial oxidation reaction. The CH 4conversion increased with increasing O2/C ratio. Moreover, the CH4 conversion was higher than the equilibrium conversion calculated using the blank outlet temperature for O2/C〉0.42 and reached about 100% at O2/C=0.55. However, the hydrogen concentration decreased for O2/C〉0.45 because hydrogen was combusted to steam in the presence of excess oxygen. On the other hand, the hydrogen and CO2 concentrations increased and the CO concentration decreased with increasing SIC ratio. As a result, it was found that the highest hydrogen concentrations and CH4 conversions were attained at the O2/C ratios of 0.45-0.55 and the SIC ratios of 1.5-2.5. Moreover, the H2/CO ratio could also be controlled in the range from about 2 to 3.5 to give at least 90% CH4 conversion, by regulating the O2/C or S/C ratios.
基金supported by the CSIRO Energy Flagship and the Chinese Scholarship Council
文摘Using solar energy to produce syngas via the endothermic reforming of methane has been extensively inves- tigated at the laboratory- and pilot plant-scales as a promising method of storing solar energy. One of the challenges to scaling up this process in a tubular reformer is to improve the reactor's performance, which is limited by mass and heat transfer issues. High thermal conductivity Cu foam was therefore used as a sub-strate to improve the catalyst's thermal conductivity during solar reforming. We also developed a method to coat the foam with the catalytically active component NiMg3AlOx. The Cu foam-based NiMg3AlOx performs better than catalysts supported on SiSiC foam, which is currently used as a substrate for solar-reforming cat- alysts, at high gas hourly space velocity (≥400,000 mL/(g.h)) or at low reaction temperatures (≤ 720 ℃). The presence of a γ-Al2O3 intermediate layer improves the adhesion between the catalyst and substrate as well as the catalytic activity.