Exploitation of sustainable energy sources requires the use of unique conversion and storage systems,such as solar panels,batteries,fuel cells,and electronic equipment.Thermal load management of these energy conversio...Exploitation of sustainable energy sources requires the use of unique conversion and storage systems,such as solar panels,batteries,fuel cells,and electronic equipment.Thermal load management of these energy conversion and storage systems is one of their challenges and concerns.In this article,the thermal management of these systems using thermoelectric modules is reviewed.The results show that by choosing the right option to remove heat from the hot side of the thermoelectric modules,it will be a suitable local cooling,and the thermoelectric modules increase the power and lifespan of the system by reducing the spot temperature.Thermoelectric modules were effective in reducing panel temperature.They increase the time to reach a temperature above 50℃ in batteries by 3 to 4 times.Also,in their integration with fuel cells,they increase the power density of the fuel cell.展开更多
Renewable power modules such as the thermoelectric generator and the PV panel are featured by low output voltage and low power.Aiming at maximum output power,a high energy efficiency module integrated converter(MIC),a...Renewable power modules such as the thermoelectric generator and the PV panel are featured by low output voltage and low power.Aiming at maximum output power,a high energy efficiency module integrated converter(MIC),as shown in Fig.1,and its control strategy for series connected distributed(SCD)renewable power systems,as shown in Fig.2,are proposed.The topology of the MIC is an improved one of the conventional H-bridge Buck-Boost converter.展开更多
Deep learning techniques are revolutionizing the developmentof medical image segmentation.With the advancement of Transformer models,especially ViT and Swin-Transformer,which enhances the remote-dependent modeling cap...Deep learning techniques are revolutionizing the developmentof medical image segmentation.With the advancement of Transformer models,especially ViT and Swin-Transformer,which enhances the remote-dependent modeling capability of the model through the self-attention mechanism,better segmentation performance can be achieve.Moreover,the high computational cost of Transformer has motivated researchers to explore more efficient models,such as the Mamba model based on state-space modeling(SSM),and for the field of medical segmentation,reducing the number of model parameters is also necessary.In this study,a novel asymmetric model called LA-UMamba was proposed,which integrates visual Mamba module to efficiently capture complex visual features and remote dependencies.The classical design of U-Net was adopted in the upsampling phase to help reduce the number of references and recover more details.To mitigate the information loss problem,an auxiliary U-Net downsampling layer was designed to focus on sizing without extracting features,thus enhancing the protection of input information while maintaining the efficiency of the model.The experiments were conducted on the ACDC MRI cardiac segmentation dataset,and the results showed that the proposed LA-UMamba achieves proved performance compared to the baseline model in several evaluation metrics,such as IoU,Accuracy,Precision,HD and ASD,which improved that the model is successful in optimizing the detail processing and reducing the complexity of the model,providing a new perspective for further optimization of medical image segmentation techniques.展开更多
Highly efficient organic solar cells(OSCs)are normally produced using the halogenated solvents chloroform or chlorobenzene,which present challenges for scalable manufacturing due to their toxicity,narrow processing wi...Highly efficient organic solar cells(OSCs)are normally produced using the halogenated solvents chloroform or chlorobenzene,which present challenges for scalable manufacturing due to their toxicity,narrow processing window and low boiling point.Herein,we develop a novel high-speed doctor-blading technique that significantly reduces the required concentration,facilitating the use of eco-friendly,non-halogenated solvents as alternatives to chloroform or chlorobenzene.By utilizing two widely used high-boiling,non-halogenated green solvents-o-xylene(o-XY)and toluene(Tol)-in the fabrication of PM 6:L 8-BO,we achieve power conversion efficiencies(PCEs)of 18.20%and 17.36%,respectively.Additionally,a module fabricated with o-XY demonstrates a notable PCE of 16.07%.In-situ testing and morphological analysis reveal that the o-XY coating process extends the liquid-to-solid transition stage to 6 s,significantly longer than the 1.7 s observed with Tol processing.This prolonged transition phase is crucial for improving the crystallinity of the thin film,reducing defect-mediated recombination,and enhancing carrier mobility,which collectively contribute to superior PCEs.展开更多
Although there are numerous optical spectroscopy techniques and methods that have been used to extract the fundamental bandgap of a semiconductor,most of them belong to one of these three approaches:(1)the excitonic a...Although there are numerous optical spectroscopy techniques and methods that have been used to extract the fundamental bandgap of a semiconductor,most of them belong to one of these three approaches:(1)the excitonic absorption,(2)modulation spectroscopy,and(3)the most widely used Tauc-plot.The excitonic absorption is based on a many-particle theory,which is physically the most correct approach,but requires more stringent crystalline quality and appropriate sample preparation and experimental implementation.The Tauc-plot is based on a single-particle theo⁃ry that neglects the many-electron effects.Modulation spectroscopy analyzes the spectroscopy features in the derivative spectrum,typically,of the reflectance and transmission under an external perturbation.Empirically,the bandgap ener⁃gy derived from the three approaches follow the order of E_(ex)>E_(MS)>E_(TP),where three transition energies are from exci⁃tonic absorption,modulation spectroscopy,and Tauc-plot,respectively.In principle,defining E_(g) as the single-elec⁃tron bandgap,we expect E_(g)>E_(ex),thus,E_(g)>E_(TP).In the literature,E_(TP) is often interpreted as E_(g),which is conceptual⁃ly problematic.However,in many cases,because the excitonic peaks are not readily identifiable,the inconsistency be⁃tween E_(g) and E_(TP) becomes invisible.In this brief review,real world examples are used(1)to illustrate how excitonic absorption features depend sensitively on the sample and measurement conditions;(2)to demonstrate the differences between E_(ex),E_(MS),and E_(TP) when they can be extracted simultaneously for one sample;and(3)to show how the popular⁃ly adopted Tauc-plot could lead to misleading results.Finally,it is pointed out that if the excitonic absorption is not ob⁃servable,the modulation spectroscopy can often yield a more useful and reasonable bandgap than Tauc-plot.展开更多
Tin-lead(Sn-Pb)mixed perovskites are extensively investigated in near-infrared(NIR)photodetectors(PDs)owing to their excellent photoelectric performance.However,achieving high-performance Sn-Pb mixed PDs remains chall...Tin-lead(Sn-Pb)mixed perovskites are extensively investigated in near-infrared(NIR)photodetectors(PDs)owing to their excellent photoelectric performance.However,achieving high-performance Sn-Pb mixed PDs remains challenging,primarily because of the rapid crystallization and the susceptibility of Sn^(2+) to oxidation.To ad⁃dress these issues,this study introduces the multifunctional molecules 2,3-difluorobenzenamine(DBM)to modulate the crystallization of Sn-Pb mixed perovskites and retard the oxidation of Sn^(2+),thereby significantly enhancing film quality.Compared with the pristine film,Sn-Pb mixed perovskite films modulated by DBM molecules exhibit a high⁃ly homogeneous morphology,reduced roughness and defect density.The self-powered NIR PDs fabricated with the improved films have a spectral response range from 300 nm to 1100 nm,a peak responsivity of 0.51 A·W^(-1),a spe⁃cific detectivity as high as 2.46×10^(11)Jones within the NIR region(780 nm to 1100 nm),a linear dynamic range ex⁃ceeding 152 dB,and ultrafast rise/fall time of 123/464 ns.Thanks to the outstanding performance of PDs,the fabri⁃cated 5×5 PDs array demonstrates superior imaging ability in the NIR region up to 980 nm.This work advances the development of Sn-Pb mixed perovskites for NIR detection and paves the way for their commercialization.展开更多
Large-area two-dimensional(2D)materials,such as graphene,MoS_(2),WS_(2),h-BN,black phosphorus,and MXenes,are a class of advanced materials with many possible applications.Different applications need different substrat...Large-area two-dimensional(2D)materials,such as graphene,MoS_(2),WS_(2),h-BN,black phosphorus,and MXenes,are a class of advanced materials with many possible applications.Different applications need different substrates,and each substrate may need a different way of transferring the 2D material onto it.Problems such as local stress concentrations,an uneven surface tension,inconsistent adhesion,mechanical damage and contamination during the transfer can adversely affect the quality and properties of the transferred material.Therefore,how to improve the integrity,flatness and cleanness of large area 2D materials is a challenge.In order to achieve high-quality transfer,the main concern is to control the interface adhesion between the substrate,the 2D material and the transfer medium.This review focuses on this topic,and finally,in order to promote the industrial use of large area 2D materials,provides a recipe for this transfer process based on the requirements of the application,and points out the current problems and directions for future development.展开更多
This feature article illustrates the potential of polarization modulation infrared reflection absorption spectroscopy(PM IRRAS)to provide molecular-level information about the structure,orientation and conformation of...This feature article illustrates the potential of polarization modulation infrared reflection absorption spectroscopy(PM IRRAS)to provide molecular-level information about the structure,orientation and conformation of constituents of thin films at electrode surfaces.PM IRRAS relies on the surface selection rules stating that the p-polarized IR beam is enhanced,while the s-polarized beam is attenuated at the metal surface.The difference between p-and s-polarized beams eliminates the background of the solvent and provides IR spectra at a single electrode potential.In contrast,two other popular in situ IR spectroscopic techniques,namely,subtractively normalized interfacial Fourier transform infrared spectroscopy(SNIFTIRS)and surface-enhanced infrared reflection absorption spectroscopy(SEIRAS),provide potential difference spectra to remove the signal from the bulk solution.In this feature article,we provide a brief tutorial on how to run the PM IRRAS experiment and describe the methods used for background elimination first.The application of the PM IRRAS in the biomimetic research is then illustrated by three examples:construction of a tethered bilayer,reconstitution of colicin into a phospholipid bilayer and determination of the orientation of nucleolipids in a monolayer assembled at a gold electrode surface.Finally,the structural changes of graphene oxide during its electrochemical reduction are described to highlight the promising application of PM IRRAS in materials science.展开更多
Evaluation of Gamma Index Analysis for Detecting Errors in Patient-specific Quality Assurance in Intensity Modulated Radiotherapy Taylan Tugrul1(1.Department of Radiation Oncology,Medicine Faculty of Van Yüzü...Evaluation of Gamma Index Analysis for Detecting Errors in Patient-specific Quality Assurance in Intensity Modulated Radiotherapy Taylan Tugrul1(1.Department of Radiation Oncology,Medicine Faculty of Van YüzüncüYıl University,Van,Turkey)Abstract:Quality assurance practices performed before treatment are believed to identify various potential errors.In this study,2-dimensional(2D)dosimetric results were analyzed by making some intentional mistakes in six different treatment plans.In this way,the detectability of errors was investigated.In all segments of all treatment plans,one of the multileaf collimators was kept fixed at different positions on the central axis.In addition to multileaf collimators error,gantry error was also examined in the study.The dose distribution results obtained by Treatment Planning System(TPS)were compared with those obtained by the 2D array device,both as local calculation and global calculation methods,using the gamma analysis method.When the results are examined in the case where the Multi-leaf collimators(MLC)is fixed at the 1 cm position.展开更多
Femtosecond laser processing is an important machining method for micro-optical components such as Fresnel zone plate(FZP).However,the low processing efficiency of the femtosecond laser restricts its application.Here,...Femtosecond laser processing is an important machining method for micro-optical components such as Fresnel zone plate(FZP).However,the low processing efficiency of the femtosecond laser restricts its application.Here,a femtosecond laser Bessel beam is proposed to process micro-FZP,which is modulated from a Gaussian beam to a Bessel annular beam.The processing time for FZP with an outer diameter of 60μm is reduced from 30 min to 1.5 min on an important semiconductor material gallium arsenide(GaAs),which significantly improves the processing efficiency.In the modulation process,a central ablation hole that has an adverse effect on the diffraction performance is produced,and the adverse effect is eliminated by superimposing the blazed grating hologram.Meanwhile,the FZP machined by spatial light modulator(SLM)has good morphology and higher diffraction efficiency,which provides a strong guarantee for the application of micro-FZP in computed tomography and solar photovoltaic cells.展开更多
Energetic compounds bearing the trinitromethyl group are garnering broad attraction as potential candidates for a new generation of high energy dense oxidizers.In this work,an effective dual modulation strategy involv...Energetic compounds bearing the trinitromethyl group are garnering broad attraction as potential candidates for a new generation of high energy dense oxidizers.In this work,an effective dual modulation strategy involving both molecular isomerization and crystal morphology control was employed to design and optimize trinitromethyl-oxadiazole with improved comprehensive performance.Utilizing this dual strategy,3,5-bis(trinitromethyl)-1,2,4-oxadiazole(3)was synthesized,resulting in the formation of two distinct crystal morphologies(needle and sheet)corresponding to two crystal forms(3-a and3-b).Encouragingly,while maintaining ultra-high oxygen balance(21.73%),3 achieves impressive densities(1.97-1.98 g/cm^(3)).To our knowledge,the density of 1.98 g/cm^(3)for 3-a sets a new record among that of nitrogen-rich monocyclic compounds.Notably,practical crystal morphology prediction was creatively introduced to guide the experimental crystallization conditions of 3,increasing the impact sensitivity and friction sensitivity from 1 J to 80 N(3-a)to 10 J and 240 N(3-b),respectively.Additionally,the crystal structural analyses and theoretical calculations were conducted to elucidate the reasons of differences between 3-a and 3-b in density and stability.This work provides an efficient strategy to enhance performance of trinitromethyl derivatives,broadening the path and expanding the toolbox for energetic materials.展开更多
Extensive experiments suggest that kurtosis-based fingerprint features are effective for specific emitter identification (SEI). Nevertheless, the lack of mechanistic explanation restricts the use of fingerprint featur...Extensive experiments suggest that kurtosis-based fingerprint features are effective for specific emitter identification (SEI). Nevertheless, the lack of mechanistic explanation restricts the use of fingerprint features to a data-driven technique and fur-ther reduces the adaptability of the technique to other datasets. To address this issue, the mechanism how the phase noise of high-frequency oscillators and the nonlinearity of power ampli-fiers affect the kurtosis of communication signals is investigated. Mathematical models are derived for intentional modulation (IM) and unintentional modulation (UIM). Analysis indicates that the phase noise of high-frequency oscillators and the nonlinearity of power amplifiers affect the kurtosis frequency and amplitude, respectively. A novel SEI method based on frequency and ampli-tude of the signal kurtosis (FA-SK) is further proposed. Simula-tion and real-world experiments validate theoretical analysis and also confirm the efficiency and effectiveness of the proposed method.展开更多
A generalized multiple-mode prolate spherical wave functions (PSWFs) multi-carrier with index modulation approach is proposed with the purpose of improving the spectral efficiency of PSWFs multi-carrier systems. The p...A generalized multiple-mode prolate spherical wave functions (PSWFs) multi-carrier with index modulation approach is proposed with the purpose of improving the spectral efficiency of PSWFs multi-carrier systems. The proposed method,based on the optimized multi-index modulation, does not limit the number of signals in the first and second constellations and abandons the concept of limiting the number of signals in different constellations. It successfully increases the spectrum efficiency of the system while expanding the number of modulation symbol combinations and the index dimension of PSWFs signals. The proposed method outperforms the PSWFs multi-carrier index modulation method based on optimized multiple indexes in terms of spectrum efficiency, but at the expense of system computational complexity and bit error performance. For example, with n=10 subcarriers and a bit error rate of 1×10^(-5),spectral efficiency can be raised by roughly 12.4%.展开更多
Range-azimuth imaging of ground targets via frequency-modulated continuous wave(FMCW)radar is crucial for effective target detection.However,when the pitch of the moving array constructed during motion exceeds the phy...Range-azimuth imaging of ground targets via frequency-modulated continuous wave(FMCW)radar is crucial for effective target detection.However,when the pitch of the moving array constructed during motion exceeds the physical array aperture,azimuth ambiguity occurs,making range-azimuth imaging on a moving platform challenging.To address this issue,we theoretically analyze azimuth ambiguity generation in sparse motion arrays and propose a dual-aperture adaptive processing(DAAP)method for suppressing azimuth ambiguity.This method combines spatial multiple-input multiple-output(MIMO)arrays with sparse motion arrays to achieve high-resolution range-azimuth imaging.In addition,an adaptive QR decomposition denoising method for sparse array signals based on iterative low-rank matrix approximation(LRMA)and regularized QR is proposed to preprocess sparse motion array signals.Simulations and experiments show that on a two-transmitter-four-receiver array,the signal-to-noise ratio(SNR)of the sparse motion array signal after noise suppression via adaptive QR decomposition can exceed 0 dB,and the azimuth ambiguity signal ratio(AASR)can be reduced to below-20 dB.展开更多
A sliding mode and active disturbance rejection control(SM-ADRC)was employed to regulate the speed of a permanent magnet synchronous motor(PMSM).The major advantages of the proposed control scheme are that it can main...A sliding mode and active disturbance rejection control(SM-ADRC)was employed to regulate the speed of a permanent magnet synchronous motor(PMSM).The major advantages of the proposed control scheme are that it can maintain the original features of ADRC and make the parameters of ADRC transition smoothly.The proposed control scheme also ensures speed control accuracy and improves the robustness and anti-load disturbance ability of the system.Moreover,through the analysis of a d-axis current output equation,a novel current-loop SM-ADRC is presented to improve the system’s dynamic performance and inner ability of anti-load disturbance.Results of a simulation and experiments show that the improved sliding-mode ADRC system has the advantages of fast response,small overshoot,small steady-state error,wide speed range and high control accuracy.It shows that the system has strong anti-interference ability to reduce the influence of variations in rotational inertia,load and internal parameters.展开更多
An impeller is difficult to machine because of severe collision due to the complex shape,overlapping and twisted shape of the impeller blades.So,most computer aided manufacturing(CAM)software companies have developed ...An impeller is difficult to machine because of severe collision due to the complex shape,overlapping and twisted shape of the impeller blades.So,most computer aided manufacturing(CAM)software companies have developed CAM module for manufacturing impeller according to their CAM software.But these dedicated modules are difficult to use for inexperienced users.The purpose of this work is to develop a tool-path generation module for impellers.For this purpose,it is based on Visual Basic language and used CATIA graphical environment.The result of simulation for generated tool-path by the module is satisfactory.And it has slow processing speed compared to other commercial modules,but it is easy to use.展开更多
An approach to identification of linear continuous-time system is studied with modulating functions. Based on wavelet analysis theory, the multi-resolution modulating functions are designed, and the corresponding filt...An approach to identification of linear continuous-time system is studied with modulating functions. Based on wavelet analysis theory, the multi-resolution modulating functions are designed, and the corresponding filters have been analyzed. Using linear modulating filters, we can obtain an identification model that is parameterized directly in continuous-time model parameters. By applying the results from discrete-time model identification to the obtained identification model, a continuous-time estimation method is developed. Considering the accuracy of parameter estimates, an instrumental variable (Ⅳ) method is proposed, and the design of modulating integral filter is discussed. The relationship between the accuracy of identification and the parameter of modulating filter is investigated, and some points about designing Gaussian wavelet modulating function are outlined. Finally, a simulation study is also included to verify the theoretical results.展开更多
Modular technology can effectively support the rapid design of products, and it is one of the key technologies to realize mass customization design. With the application of product lifecycle management(PLM) system in ...Modular technology can effectively support the rapid design of products, and it is one of the key technologies to realize mass customization design. With the application of product lifecycle management(PLM) system in enterprises, the product lifecycle data have been effectively managed. However, these data have not been fully utilized in module division, especially for complex machinery products. To solve this problem, a product module mining method for the PLM database is proposed to improve the effect of module division. Firstly, product data are extracted from the PLM database by data extraction algorithm. Then, data normalization and structure logical inspection are used to preprocess the extracted defective data. The preprocessed product data are analyzed and expressed in a matrix for module mining. Finally, the fuzzy c-means clustering(FCM) algorithm is used to generate product modules, which are stored in product module library after module marking and post-processing. The feasibility and effectiveness of the proposed method are verified by a case study of high pressure valve.展开更多
文摘Exploitation of sustainable energy sources requires the use of unique conversion and storage systems,such as solar panels,batteries,fuel cells,and electronic equipment.Thermal load management of these energy conversion and storage systems is one of their challenges and concerns.In this article,the thermal management of these systems using thermoelectric modules is reviewed.The results show that by choosing the right option to remove heat from the hot side of the thermoelectric modules,it will be a suitable local cooling,and the thermoelectric modules increase the power and lifespan of the system by reducing the spot temperature.Thermoelectric modules were effective in reducing panel temperature.They increase the time to reach a temperature above 50℃ in batteries by 3 to 4 times.Also,in their integration with fuel cells,they increase the power density of the fuel cell.
文摘Renewable power modules such as the thermoelectric generator and the PV panel are featured by low output voltage and low power.Aiming at maximum output power,a high energy efficiency module integrated converter(MIC),as shown in Fig.1,and its control strategy for series connected distributed(SCD)renewable power systems,as shown in Fig.2,are proposed.The topology of the MIC is an improved one of the conventional H-bridge Buck-Boost converter.
文摘Deep learning techniques are revolutionizing the developmentof medical image segmentation.With the advancement of Transformer models,especially ViT and Swin-Transformer,which enhances the remote-dependent modeling capability of the model through the self-attention mechanism,better segmentation performance can be achieve.Moreover,the high computational cost of Transformer has motivated researchers to explore more efficient models,such as the Mamba model based on state-space modeling(SSM),and for the field of medical segmentation,reducing the number of model parameters is also necessary.In this study,a novel asymmetric model called LA-UMamba was proposed,which integrates visual Mamba module to efficiently capture complex visual features and remote dependencies.The classical design of U-Net was adopted in the upsampling phase to help reduce the number of references and recover more details.To mitigate the information loss problem,an auxiliary U-Net downsampling layer was designed to focus on sizing without extracting features,thus enhancing the protection of input information while maintaining the efficiency of the model.The experiments were conducted on the ACDC MRI cardiac segmentation dataset,and the results showed that the proposed LA-UMamba achieves proved performance compared to the baseline model in several evaluation metrics,such as IoU,Accuracy,Precision,HD and ASD,which improved that the model is successful in optimizing the detail processing and reducing the complexity of the model,providing a new perspective for further optimization of medical image segmentation techniques.
基金Project(2022YFB3803300)supported by the National Key Research and Development Program of ChinaProjects(U23A20138,52173192)supported by the National Natural Science Foundation of China+1 种基金Project(GZC20233148)supported by the Postdoctoral Fellowship Program of CPSF,ChinaProject(140050043)supported by the Central South University Postdoctoral Research Funding,China。
文摘Highly efficient organic solar cells(OSCs)are normally produced using the halogenated solvents chloroform or chlorobenzene,which present challenges for scalable manufacturing due to their toxicity,narrow processing window and low boiling point.Herein,we develop a novel high-speed doctor-blading technique that significantly reduces the required concentration,facilitating the use of eco-friendly,non-halogenated solvents as alternatives to chloroform or chlorobenzene.By utilizing two widely used high-boiling,non-halogenated green solvents-o-xylene(o-XY)and toluene(Tol)-in the fabrication of PM 6:L 8-BO,we achieve power conversion efficiencies(PCEs)of 18.20%and 17.36%,respectively.Additionally,a module fabricated with o-XY demonstrates a notable PCE of 16.07%.In-situ testing and morphological analysis reveal that the o-XY coating process extends the liquid-to-solid transition stage to 6 s,significantly longer than the 1.7 s observed with Tol processing.This prolonged transition phase is crucial for improving the crystallinity of the thin film,reducing defect-mediated recombination,and enhancing carrier mobility,which collectively contribute to superior PCEs.
基金Supported by Bissell Distinguished Professor Endowment Fund at UNC-Charlotte。
文摘Although there are numerous optical spectroscopy techniques and methods that have been used to extract the fundamental bandgap of a semiconductor,most of them belong to one of these three approaches:(1)the excitonic absorption,(2)modulation spectroscopy,and(3)the most widely used Tauc-plot.The excitonic absorption is based on a many-particle theory,which is physically the most correct approach,but requires more stringent crystalline quality and appropriate sample preparation and experimental implementation.The Tauc-plot is based on a single-particle theo⁃ry that neglects the many-electron effects.Modulation spectroscopy analyzes the spectroscopy features in the derivative spectrum,typically,of the reflectance and transmission under an external perturbation.Empirically,the bandgap ener⁃gy derived from the three approaches follow the order of E_(ex)>E_(MS)>E_(TP),where three transition energies are from exci⁃tonic absorption,modulation spectroscopy,and Tauc-plot,respectively.In principle,defining E_(g) as the single-elec⁃tron bandgap,we expect E_(g)>E_(ex),thus,E_(g)>E_(TP).In the literature,E_(TP) is often interpreted as E_(g),which is conceptual⁃ly problematic.However,in many cases,because the excitonic peaks are not readily identifiable,the inconsistency be⁃tween E_(g) and E_(TP) becomes invisible.In this brief review,real world examples are used(1)to illustrate how excitonic absorption features depend sensitively on the sample and measurement conditions;(2)to demonstrate the differences between E_(ex),E_(MS),and E_(TP) when they can be extracted simultaneously for one sample;and(3)to show how the popular⁃ly adopted Tauc-plot could lead to misleading results.Finally,it is pointed out that if the excitonic absorption is not ob⁃servable,the modulation spectroscopy can often yield a more useful and reasonable bandgap than Tauc-plot.
基金Supported by National Key Research and Development Program of China(2022YFA1404201)National Natural Science Foundation of China(62205187,U23A20380,U22A2091,62222509,62127817,62075120)+3 种基金Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China(IRT_17R70)Fundamental Research Program of Shanxi Province(202103021223032,202303021222031)Project Funded by China Postdoctoral Science Foundation(2022M722006)Fund for Shanxi“1331 Project”Key Subjects Construction。
文摘Tin-lead(Sn-Pb)mixed perovskites are extensively investigated in near-infrared(NIR)photodetectors(PDs)owing to their excellent photoelectric performance.However,achieving high-performance Sn-Pb mixed PDs remains challenging,primarily because of the rapid crystallization and the susceptibility of Sn^(2+) to oxidation.To ad⁃dress these issues,this study introduces the multifunctional molecules 2,3-difluorobenzenamine(DBM)to modulate the crystallization of Sn-Pb mixed perovskites and retard the oxidation of Sn^(2+),thereby significantly enhancing film quality.Compared with the pristine film,Sn-Pb mixed perovskite films modulated by DBM molecules exhibit a high⁃ly homogeneous morphology,reduced roughness and defect density.The self-powered NIR PDs fabricated with the improved films have a spectral response range from 300 nm to 1100 nm,a peak responsivity of 0.51 A·W^(-1),a spe⁃cific detectivity as high as 2.46×10^(11)Jones within the NIR region(780 nm to 1100 nm),a linear dynamic range ex⁃ceeding 152 dB,and ultrafast rise/fall time of 123/464 ns.Thanks to the outstanding performance of PDs,the fabri⁃cated 5×5 PDs array demonstrates superior imaging ability in the NIR region up to 980 nm.This work advances the development of Sn-Pb mixed perovskites for NIR detection and paves the way for their commercialization.
基金the National Key R&D Program of China(2022YFA1505200)the National Natural Science Foundation of China(22472140,22021001)the Fundamental Research Funds for the Central Universities(20720210017 and 20720210009)。
文摘Large-area two-dimensional(2D)materials,such as graphene,MoS_(2),WS_(2),h-BN,black phosphorus,and MXenes,are a class of advanced materials with many possible applications.Different applications need different substrates,and each substrate may need a different way of transferring the 2D material onto it.Problems such as local stress concentrations,an uneven surface tension,inconsistent adhesion,mechanical damage and contamination during the transfer can adversely affect the quality and properties of the transferred material.Therefore,how to improve the integrity,flatness and cleanness of large area 2D materials is a challenge.In order to achieve high-quality transfer,the main concern is to control the interface adhesion between the substrate,the 2D material and the transfer medium.This review focuses on this topic,and finally,in order to promote the industrial use of large area 2D materials,provides a recipe for this transfer process based on the requirements of the application,and points out the current problems and directions for future development.
基金This research was funded by Discovery Grants from the Natural Sciences and Engineering Research Council of Canada(JL:RGPIN-2022-03958AC:RGPIN-2022-04238).
文摘This feature article illustrates the potential of polarization modulation infrared reflection absorption spectroscopy(PM IRRAS)to provide molecular-level information about the structure,orientation and conformation of constituents of thin films at electrode surfaces.PM IRRAS relies on the surface selection rules stating that the p-polarized IR beam is enhanced,while the s-polarized beam is attenuated at the metal surface.The difference between p-and s-polarized beams eliminates the background of the solvent and provides IR spectra at a single electrode potential.In contrast,two other popular in situ IR spectroscopic techniques,namely,subtractively normalized interfacial Fourier transform infrared spectroscopy(SNIFTIRS)and surface-enhanced infrared reflection absorption spectroscopy(SEIRAS),provide potential difference spectra to remove the signal from the bulk solution.In this feature article,we provide a brief tutorial on how to run the PM IRRAS experiment and describe the methods used for background elimination first.The application of the PM IRRAS in the biomimetic research is then illustrated by three examples:construction of a tethered bilayer,reconstitution of colicin into a phospholipid bilayer and determination of the orientation of nucleolipids in a monolayer assembled at a gold electrode surface.Finally,the structural changes of graphene oxide during its electrochemical reduction are described to highlight the promising application of PM IRRAS in materials science.
文摘Evaluation of Gamma Index Analysis for Detecting Errors in Patient-specific Quality Assurance in Intensity Modulated Radiotherapy Taylan Tugrul1(1.Department of Radiation Oncology,Medicine Faculty of Van YüzüncüYıl University,Van,Turkey)Abstract:Quality assurance practices performed before treatment are believed to identify various potential errors.In this study,2-dimensional(2D)dosimetric results were analyzed by making some intentional mistakes in six different treatment plans.In this way,the detectability of errors was investigated.In all segments of all treatment plans,one of the multileaf collimators was kept fixed at different positions on the central axis.In addition to multileaf collimators error,gantry error was also examined in the study.The dose distribution results obtained by Treatment Planning System(TPS)were compared with those obtained by the 2D array device,both as local calculation and global calculation methods,using the gamma analysis method.When the results are examined in the case where the Multi-leaf collimators(MLC)is fixed at the 1 cm position.
基金Projects(51875584,51875585,51975590)supported by the National Natural Science Foundation of China。
文摘Femtosecond laser processing is an important machining method for micro-optical components such as Fresnel zone plate(FZP).However,the low processing efficiency of the femtosecond laser restricts its application.Here,a femtosecond laser Bessel beam is proposed to process micro-FZP,which is modulated from a Gaussian beam to a Bessel annular beam.The processing time for FZP with an outer diameter of 60μm is reduced from 30 min to 1.5 min on an important semiconductor material gallium arsenide(GaAs),which significantly improves the processing efficiency.In the modulation process,a central ablation hole that has an adverse effect on the diffraction performance is produced,and the adverse effect is eliminated by superimposing the blazed grating hologram.Meanwhile,the FZP machined by spatial light modulator(SLM)has good morphology and higher diffraction efficiency,which provides a strong guarantee for the application of micro-FZP in computed tomography and solar photovoltaic cells.
基金supported by the National Natural Science Foundation of China(No.22375021,22235003,22261132516&22205021)the BIT Research and Innovation 265 Promoting Project(Grant No.2023YCXZ017)。
文摘Energetic compounds bearing the trinitromethyl group are garnering broad attraction as potential candidates for a new generation of high energy dense oxidizers.In this work,an effective dual modulation strategy involving both molecular isomerization and crystal morphology control was employed to design and optimize trinitromethyl-oxadiazole with improved comprehensive performance.Utilizing this dual strategy,3,5-bis(trinitromethyl)-1,2,4-oxadiazole(3)was synthesized,resulting in the formation of two distinct crystal morphologies(needle and sheet)corresponding to two crystal forms(3-a and3-b).Encouragingly,while maintaining ultra-high oxygen balance(21.73%),3 achieves impressive densities(1.97-1.98 g/cm^(3)).To our knowledge,the density of 1.98 g/cm^(3)for 3-a sets a new record among that of nitrogen-rich monocyclic compounds.Notably,practical crystal morphology prediction was creatively introduced to guide the experimental crystallization conditions of 3,increasing the impact sensitivity and friction sensitivity from 1 J to 80 N(3-a)to 10 J and 240 N(3-b),respectively.Additionally,the crystal structural analyses and theoretical calculations were conducted to elucidate the reasons of differences between 3-a and 3-b in density and stability.This work provides an efficient strategy to enhance performance of trinitromethyl derivatives,broadening the path and expanding the toolbox for energetic materials.
基金supported by the Youth Science and Technology Innovation Award of National University of Defense Technology (18/19-QNCXJ)the National Science Foundation of China (62271494)
文摘Extensive experiments suggest that kurtosis-based fingerprint features are effective for specific emitter identification (SEI). Nevertheless, the lack of mechanistic explanation restricts the use of fingerprint features to a data-driven technique and fur-ther reduces the adaptability of the technique to other datasets. To address this issue, the mechanism how the phase noise of high-frequency oscillators and the nonlinearity of power ampli-fiers affect the kurtosis of communication signals is investigated. Mathematical models are derived for intentional modulation (IM) and unintentional modulation (UIM). Analysis indicates that the phase noise of high-frequency oscillators and the nonlinearity of power amplifiers affect the kurtosis frequency and amplitude, respectively. A novel SEI method based on frequency and ampli-tude of the signal kurtosis (FA-SK) is further proposed. Simula-tion and real-world experiments validate theoretical analysis and also confirm the efficiency and effectiveness of the proposed method.
基金supported by the China National Postdoctoral Program for Innovative Talents(BX20200039)the Special Fund Project of“Mount Taishan Scholars”Construction Project in Shandong Province(ts20081130).
文摘A generalized multiple-mode prolate spherical wave functions (PSWFs) multi-carrier with index modulation approach is proposed with the purpose of improving the spectral efficiency of PSWFs multi-carrier systems. The proposed method,based on the optimized multi-index modulation, does not limit the number of signals in the first and second constellations and abandons the concept of limiting the number of signals in different constellations. It successfully increases the spectrum efficiency of the system while expanding the number of modulation symbol combinations and the index dimension of PSWFs signals. The proposed method outperforms the PSWFs multi-carrier index modulation method based on optimized multiple indexes in terms of spectrum efficiency, but at the expense of system computational complexity and bit error performance. For example, with n=10 subcarriers and a bit error rate of 1×10^(-5),spectral efficiency can be raised by roughly 12.4%.
基金supported by the National Natural Science Foundation of China under Grant 62301051.
文摘Range-azimuth imaging of ground targets via frequency-modulated continuous wave(FMCW)radar is crucial for effective target detection.However,when the pitch of the moving array constructed during motion exceeds the physical array aperture,azimuth ambiguity occurs,making range-azimuth imaging on a moving platform challenging.To address this issue,we theoretically analyze azimuth ambiguity generation in sparse motion arrays and propose a dual-aperture adaptive processing(DAAP)method for suppressing azimuth ambiguity.This method combines spatial multiple-input multiple-output(MIMO)arrays with sparse motion arrays to achieve high-resolution range-azimuth imaging.In addition,an adaptive QR decomposition denoising method for sparse array signals based on iterative low-rank matrix approximation(LRMA)and regularized QR is proposed to preprocess sparse motion array signals.Simulations and experiments show that on a two-transmitter-four-receiver array,the signal-to-noise ratio(SNR)of the sparse motion array signal after noise suppression via adaptive QR decomposition can exceed 0 dB,and the azimuth ambiguity signal ratio(AASR)can be reduced to below-20 dB.
基金Project(2011AA11A10102) supported by the High-tech Research and Development Program of China
文摘A sliding mode and active disturbance rejection control(SM-ADRC)was employed to regulate the speed of a permanent magnet synchronous motor(PMSM).The major advantages of the proposed control scheme are that it can maintain the original features of ADRC and make the parameters of ADRC transition smoothly.The proposed control scheme also ensures speed control accuracy and improves the robustness and anti-load disturbance ability of the system.Moreover,through the analysis of a d-axis current output equation,a novel current-loop SM-ADRC is presented to improve the system’s dynamic performance and inner ability of anti-load disturbance.Results of a simulation and experiments show that the improved sliding-mode ADRC system has the advantages of fast response,small overshoot,small steady-state error,wide speed range and high control accuracy.It shows that the system has strong anti-interference ability to reduce the influence of variations in rotational inertia,load and internal parameters.
基金Project supported by the Second Stage of Brain Korea 21 Projects
文摘An impeller is difficult to machine because of severe collision due to the complex shape,overlapping and twisted shape of the impeller blades.So,most computer aided manufacturing(CAM)software companies have developed CAM module for manufacturing impeller according to their CAM software.But these dedicated modules are difficult to use for inexperienced users.The purpose of this work is to develop a tool-path generation module for impellers.For this purpose,it is based on Visual Basic language and used CATIA graphical environment.The result of simulation for generated tool-path by the module is satisfactory.And it has slow processing speed compared to other commercial modules,but it is easy to use.
基金This project was supported by China Postdoctoral Science Foundation (2003034466)Scientific Research Fund of Hunan Provincial Education Department (02B032).
文摘An approach to identification of linear continuous-time system is studied with modulating functions. Based on wavelet analysis theory, the multi-resolution modulating functions are designed, and the corresponding filters have been analyzed. Using linear modulating filters, we can obtain an identification model that is parameterized directly in continuous-time model parameters. By applying the results from discrete-time model identification to the obtained identification model, a continuous-time estimation method is developed. Considering the accuracy of parameter estimates, an instrumental variable (Ⅳ) method is proposed, and the design of modulating integral filter is discussed. The relationship between the accuracy of identification and the parameter of modulating filter is investigated, and some points about designing Gaussian wavelet modulating function are outlined. Finally, a simulation study is also included to verify the theoretical results.
基金Project(51275362)supported by the National Natural Science Foundation of ChinaProject(2013M542055)supported by China Postdoctoral Science Foundation Funded
文摘Modular technology can effectively support the rapid design of products, and it is one of the key technologies to realize mass customization design. With the application of product lifecycle management(PLM) system in enterprises, the product lifecycle data have been effectively managed. However, these data have not been fully utilized in module division, especially for complex machinery products. To solve this problem, a product module mining method for the PLM database is proposed to improve the effect of module division. Firstly, product data are extracted from the PLM database by data extraction algorithm. Then, data normalization and structure logical inspection are used to preprocess the extracted defective data. The preprocessed product data are analyzed and expressed in a matrix for module mining. Finally, the fuzzy c-means clustering(FCM) algorithm is used to generate product modules, which are stored in product module library after module marking and post-processing. The feasibility and effectiveness of the proposed method are verified by a case study of high pressure valve.