期刊文献+
共找到98篇文章
< 1 2 5 >
每页显示 20 50 100
Fuzzy c-means clustering based on spatial neighborhood information for image segmentation 被引量:15
1
作者 Yanling Li Yi Shen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第2期323-328,共6页
Fuzzy c-means (FCM) algorithm is one of the most popular methods for image segmentation. However, the standard FCM algorithm is sensitive to noise because of not taking into account the spatial information in the im... Fuzzy c-means (FCM) algorithm is one of the most popular methods for image segmentation. However, the standard FCM algorithm is sensitive to noise because of not taking into account the spatial information in the image. An improved FCM algorithm is proposed to improve the antinoise performance of FCM algorithm. The new algorithm is formulated by incorporating the spatial neighborhood information into the membership function for clustering. The distribution statistics of the neighborhood pixels and the prior probability are used to form a new membership func- tion. It is not only effective to remove the noise spots but also can reduce the misclassified pixels. Experimental results indicate that the proposed algorithm is more accurate and robust to noise than the standard FCM algorithm. 展开更多
关键词 image segmentation fuzzy c-means spatial informa- tion. robust.
在线阅读 下载PDF
New two-dimensional fuzzy C-means clustering algorithm for image segmentation 被引量:4
2
作者 周鲜成 申群太 刘利枚 《Journal of Central South University of Technology》 EI 2008年第6期882-887,共6页
To solve the problem of poor anti-noise performance of the traditional fuzzy C-means (FCM) algorithm in image segmentation, a novel two-dimensional FCM clustering algorithm for image segmentation was proposed. In this... To solve the problem of poor anti-noise performance of the traditional fuzzy C-means (FCM) algorithm in image segmentation, a novel two-dimensional FCM clustering algorithm for image segmentation was proposed. In this method, the image segmentation was converted into an optimization problem. The fitness function containing neighbor information was set up based on the gray information and the neighbor relations between the pixels described by the improved two-dimensional histogram. By making use of the global searching ability of the predator-prey particle swarm optimization, the optimal cluster center could be obtained by iterative optimization, and the image segmentation could be accomplished. The simulation results show that the segmentation accuracy ratio of the proposed method is above 99%. The proposed algorithm has strong anti-noise capability, high clustering accuracy and good segment effect, indicating that it is an effective algorithm for image segmentation. 展开更多
关键词 image segmentation fuzzy c-means clustering particle swarm optimization two-dimensional histogram
在线阅读 下载PDF
Improved evidential fuzzy c-means method 被引量:4
3
作者 JIANG Wen YANG Tian +2 位作者 SHOU Yehang TANG Yongchuan HU Weiwei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第1期187-195,共9页
Dempster-Shafer evidence theory(DS theory) is widely used in brain magnetic resonance imaging(MRI) segmentation,due to its efficient combination of the evidence from different sources. In this paper, an improved MRI s... Dempster-Shafer evidence theory(DS theory) is widely used in brain magnetic resonance imaging(MRI) segmentation,due to its efficient combination of the evidence from different sources. In this paper, an improved MRI segmentation method,which is based on fuzzy c-means(FCM) and DS theory, is proposed. Firstly, the average fusion method is used to reduce the uncertainty and the conflict information in the pictures. Then, the neighborhood information and the different influences of spatial location of neighborhood pixels are taken into consideration to handle the spatial information. Finally, the segmentation and the sensor data fusion are achieved by using the DS theory. The simulated images and the MRI images illustrate that our proposed method is more effective in image segmentation. 展开更多
关键词 average fusion spatial information Dempster-Shafer evidence theory(DS theory) fuzzy c-means(FCM) magnetic resonance imaging(MRI) image segmentation
在线阅读 下载PDF
Integrated parallel forecasting model based on modified fuzzy time series and SVM 被引量:1
4
作者 Yong Shuai Tailiang Song Jianping Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第4期766-775,共10页
A dynamic parallel forecasting model is proposed, which is based on the problem of current forecasting models and their combined model. According to the process of the model, the fuzzy C-means clustering algorithm is ... A dynamic parallel forecasting model is proposed, which is based on the problem of current forecasting models and their combined model. According to the process of the model, the fuzzy C-means clustering algorithm is improved in outliers operation and distance in the clusters and among the clusters. Firstly, the input data sets are optimized and their coherence is ensured, the region scale algorithm is modified and non-isometric multi scale region fuzzy time series model is built. At the same time, the particle swarm optimization algorithm about the particle speed, location and inertia weight value is improved, this method is used to optimize the parameters of support vector machine, construct the combined forecast model, build the dynamic parallel forecast model, and calculate the dynamic weight values and regard the product of the weight value and forecast value to be the final forecast values. At last, the example shows the improved forecast model is effective and accurate. 展开更多
关键词 fuzzy c-means clustering fuzzy time series interval partitioning support vector machine particle swarm optimization algorithm parallel forecasting
在线阅读 下载PDF
Partition region-based suppressed fuzzy C-means algorithm 被引量:1
5
作者 Kun Zhang Weiren Kong +4 位作者 Peipei Liu Jiao Shi Yu Lei Jie Zou Min Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第5期996-1008,共13页
Aimed at the problem that the traditional suppressed fuzzy C-means clustering algorithms ignore the real needs of different objects, applying the same suppressed parameter for modifying membership degrees of all the o... Aimed at the problem that the traditional suppressed fuzzy C-means clustering algorithms ignore the real needs of different objects, applying the same suppressed parameter for modifying membership degrees of all the objects, a novel partition region-based suppressed fuzzy C-means clustering algorithm with better capacity of adaptability and robustness is proposed in this paper. The model based on the real needs of different objects is built, making it clear to decide whether to proceed with further determination; in addition, the external user-defined suppressed parameter is automatically selected according to the intrinsic structural characteristic of each dataset, making the proposed method become robust to the fluctuations in the incoming dataset and initial conditions. Experimental results show that the proposed method is more robust than its counterparts and overcomes the weakness of the original suppressed clustering algorithm in most cases. 展开更多
关键词 shadowed set suppressed fuzzy c-means clustering automatically parameter selection soft computing techniques
在线阅读 下载PDF
Power interconnected system clustering with advanced fuzzy C-mean algorithm 被引量:6
6
作者 王洪梅 KIM Jae-Hyung +2 位作者 JUNG Dong-Yean LEE Sang-Min LEE Sang-Hyuk 《Journal of Central South University》 SCIE EI CAS 2011年第1期190-195,共6页
An advanced fuzzy C-mean (FCM) algorithm was proposed for the efficient regional clustering of multi-nodes interconnected systems. Due to various locational prices and regional coherencies for each node and point, m... An advanced fuzzy C-mean (FCM) algorithm was proposed for the efficient regional clustering of multi-nodes interconnected systems. Due to various locational prices and regional coherencies for each node and point, modified similarity measure was considered to gather nodes having similar characteristics. The similarity measure was needed to contain locafi0nal prices as well as regional coherency. In order to consider the two properties simultaneously, distance measure of fuzzy C-mean algorithm had to be modified. Regional clustering algorithm for interconnected power systems was designed based on the modified fuzzy C-mean algorithm. The proposed algorithm produces proper classification for the interconnected power system and the results are demonstrated in the example of IEEE 39-bus interconnected electricity system. 展开更多
关键词 fuzzy c-mean similarity measure distance measure interconnected system CLUSTERING
在线阅读 下载PDF
高山峡谷地区隧道洞口适宜性评价与应用研究 被引量:1
7
作者 刘伟 许广春 +1 位作者 石崎材 宋树宝 《铁道工程学报》 北大核心 2025年第3期60-64,74,共6页
研究目的:青藏高原高山峡谷地区隧道洞口选址面临着极为复杂的地质和环境挑战,需规避不良地质灾害和洪水位,选择围岩稳定的位置,并考虑施工难度,以降低工程风险及成本。本文基于现场地质勘察、无人机测绘等综合勘察技术,结合模糊综合评... 研究目的:青藏高原高山峡谷地区隧道洞口选址面临着极为复杂的地质和环境挑战,需规避不良地质灾害和洪水位,选择围岩稳定的位置,并考虑施工难度,以降低工程风险及成本。本文基于现场地质勘察、无人机测绘等综合勘察技术,结合模糊综合评判法和修正灰色聚类分析法构建隧道洞口选址综合评价方法,利用量化评价方法为隧道洞口的选址提供科学依据。研究结论:(1)考虑岩性、坡度、坡面走向、高程、与山脊线距离、仰坡危岩体规模、与断层距离、与现有公路距离、与对岸相应位置间最短距离9个指标建立评价体系;(2)结合现场地质勘察、专家系统和洞口适宜性定量评价建立隧道洞口选址综合评价方法;(3)相较于单一方法,综合考虑模糊综合评判法和修正灰色聚类分析法的隧道洞口选址评价方法更能反映实际工程特征,提出切实可行的洞口选址建议;(4)本研究成果可应用于山区公路隧道建设。 展开更多
关键词 隧道洞口选址 适宜性评价 模糊综合评判法 修正灰色聚类分析法
在线阅读 下载PDF
基于路面识别的半主动空气悬架控制
8
作者 徐涛 高振洋 +2 位作者 南金瑞 孙良伟 张昊田 《北京理工大学学报》 北大核心 2025年第8期798-806,共9页
对配备了空气悬架和连续可调减震器的乘用车,建立了二自由度半主动空气悬架动力学模型,实现了对空气弹簧高度和悬架阻尼的控制.针对空气悬架空簧高度与力学特性的耦合问题及多工况悬架控制器参数适应性的问题,开发了一种适应可变空簧高... 对配备了空气悬架和连续可调减震器的乘用车,建立了二自由度半主动空气悬架动力学模型,实现了对空气弹簧高度和悬架阻尼的控制.针对空气悬架空簧高度与力学特性的耦合问题及多工况悬架控制器参数适应性的问题,开发了一种适应可变空簧高度的LSTM路面不平度识别网络,实现了自适应改进天棚控制算法.试验结果表明,设计的主动悬架控制系统具有良好的自适应性,在多种工况下显著改善车辆行驶的平顺性与操稳性. 展开更多
关键词 电控空气悬架 路面不平度识别 LSTM 改进天棚阻尼 模糊逻辑
在线阅读 下载PDF
Vague集向Fuzzy集的转化方法的比较
9
作者 陈宇明 李达辉 王鸿绪 《计算机工程与应用》 CSCD 北大核心 2009年第12期55-56,共2页
证明了vague集转化为fuzzy集的三角形法和不确定度加权法都是实用方法,证明了这两种方法是相同的方法,且证明了这两种方法都是加权均值修正法的特殊情况。
关键词 VAGUE集 fuzzy 转化方法 三角形法 不确定度加权法 加权均值修正法
在线阅读 下载PDF
Kernel method-based fuzzy clustering algorithm 被引量:2
10
作者 WuZhongdong GaoXinbo +1 位作者 XieWeixin YuJianping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第1期160-166,共7页
The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, d... The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, data with noise, data with mixture of heterogeneous cluster prototypes, asymmetric data, etc. Based on the Mercer kernel, FKCM clustering algorithm is derived from FCM algorithm united with kernel method. The results of experiments with the synthetic and real data show that the FKCM clustering algorithm is universality and can effectively unsupervised analyze datasets with variform structures in contrast to FCM algorithm. It is can be imagined that kernel-based clustering algorithm is one of important research direction of fuzzy clustering analysis. 展开更多
关键词 fuzzy clustering analysis kernel method fuzzy c-means clustering.
在线阅读 下载PDF
Integrated evaluation system under randomness and fuzziness for groundwater contamination risk assessment in a little town, Central China 被引量:2
11
作者 祝慧娜 袁兴中 +4 位作者 梁婕 刘永德 尹娟 江洪炜 黄华军 《Journal of Central South University》 SCIE EI CAS 2014年第3期1044-1050,共7页
An integrated evaluation system under randomness and fuzziness was developed in this work to systematically assess the risk of groundwater contamination in a little town, Central China. In this system, randomness of t... An integrated evaluation system under randomness and fuzziness was developed in this work to systematically assess the risk of groundwater contamination in a little town, Central China. In this system, randomness of the parameters and the fuzziness of the risk were considered simultaneously, and the exceeding standard probability of contamination and human health risk due to the contamination were integrated. The contamination risk was defined as a combination of "vulnerability" and "hazard". To calculate the value of "vulnerability", pollutant concentration was simulated by MODFLOW with random input variables and a new modified health risk assessment(MRA) model was established to analyze the level of "hazard". The limit concentration based on environmental-guideline and health risk due to manganese were systematically examined to obtain the general risk levels through a fuzzy rule base. The "vulnerability" and "hazard" were divided into five categories of "high", "medium-high", "medium", "low-medium" and "low", respectively. Then, "vulnerability" and "hazard" were firstly combined by integrated evaluation. Compared with the other two scenarios under deterministic methods, the risk obtained in the proposed system is higher. This research illustrated that ignoring of uncertainties in evaluation process might underestimate the risk level. 展开更多
关键词 integrated evaluation RANDOMNESS FUZZINESS modified health risk assessment uncertainty MANGANESE
在线阅读 下载PDF
A Novel Evolutionary-Fuzzy Control Algorithm for Complex Systems 被引量:1
12
作者 王攀 徐承志 +1 位作者 冯珊 徐爱华 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2002年第3期52-60,共9页
This paper presents an adaptive fuzzy control scheme based on modified genetic algorithm. In the control scheme, genetic algorithm is used to optimze the nonlinear quantization functions of the controller and some key... This paper presents an adaptive fuzzy control scheme based on modified genetic algorithm. In the control scheme, genetic algorithm is used to optimze the nonlinear quantization functions of the controller and some key parameters of the adaptive control algorithm. Simulation results show that this control scheme has satisfactory performance in MIMO systems, chaotic systems and delay systems. 展开更多
关键词 modified genetic algorithm Nonlinear quantization factor Adaptive fuzzy controller ITAE index Complex systems.
在线阅读 下载PDF
Fuzzy identification of nonlinear dynamic system based on selection of important input variables 被引量:1
13
作者 LYU Jinfeng LIU Fucai REN Yaxue 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第3期737-747,共11页
Input variables selection(IVS) is proved to be pivotal in nonlinear dynamic system modeling. In order to optimize the model of the nonlinear dynamic system, a fuzzy modeling method for determining the premise structur... Input variables selection(IVS) is proved to be pivotal in nonlinear dynamic system modeling. In order to optimize the model of the nonlinear dynamic system, a fuzzy modeling method for determining the premise structure by selecting important inputs of the system is studied. Firstly, a simplified two stage fuzzy curves method is proposed, which is employed to sort all possible inputs by their relevance with outputs, select the important input variables of the system and identify the structure.Secondly, in order to reduce the complexity of the model, the standard fuzzy c-means clustering algorithm and the recursive least squares algorithm are used to identify the premise parameters and conclusion parameters, respectively. Then, the effectiveness of IVS is verified by two well-known issues. Finally, the proposed identification method is applied to a realistic variable load pneumatic system. The simulation experiments indi cate that the IVS method in this paper has a positive influence on the approximation performance of the Takagi-Sugeno(T-S) fuzzy modeling. 展开更多
关键词 Takagi-Sugeno(T-S)fuzzy modeling input variable selection(IVS) fuzzy identification fuzzy c-means clustering algorithm
在线阅读 下载PDF
应用模糊PID自修正的电镀槽液温度控制方法 被引量:7
14
作者 王臻卓 周方 巴文兰 《电镀与精饰》 CAS 北大核心 2024年第5期77-84,共8页
电镀槽液温度自动控制过程属于典型的混沌过程,在温度采集的过程中存在明显的非线性波动。典型的比例-积分-微分(PID)控制算法在这种混沌特性与非线性特性干扰下,存在控制精度较低、稳定性和鲁棒性较差等问题。此外,为解决非线性问题,PI... 电镀槽液温度自动控制过程属于典型的混沌过程,在温度采集的过程中存在明显的非线性波动。典型的比例-积分-微分(PID)控制算法在这种混沌特性与非线性特性干扰下,存在控制精度较低、稳定性和鲁棒性较差等问题。此外,为解决非线性问题,PID算法需要循环迭代计算,存在控制时滞问题。以模糊控制为基础,提出了基于模糊PID的电镀槽液温度自动控制方法。该方法先设计温度数据采集结构,并将移动平均滤波、温度修正算法引入到采用的数据采集结构中,完成电镀槽液的实时温度数据采集。然后将采集到的温度数据作为构建的模糊PID控制器的输入。利用模糊控制规则引入修正因子,实现电镀槽液温度的自动控制。考虑到电镀槽液的时滞特性,在控制器中加入粗糙预估参考模型,对该特性加以抑制,提升控制性能。最后应用实验证明了所提方法的先进性。实验结果表明:所提方法具有较高的控制精度和效率,能够有效降低超调量和波动,应用效果较好。 展开更多
关键词 模糊控制 PID算法 修正因子 虚拟仪器温度检测 时滞特性抑制
在线阅读 下载PDF
有机-无机复配改良剂对红壤理化性质的影响 被引量:1
15
作者 覃超建 盛丰 +1 位作者 凌奇 陈玉妮 《环境科学与技术》 CSCD 北大核心 2024年第S2期220-229,共10页
红壤是湖南省内主要土地资源,但其质地黏重、易板结、保水性差且容易干旱,加之其酸性和弱酸性特征,严重影响了区域农作物种植和林业发展。为探究有机-无机复配改良技术对红壤的改良效果,该研究以粉煤灰、腐植酸和秸秆3种物料按正交组合... 红壤是湖南省内主要土地资源,但其质地黏重、易板结、保水性差且容易干旱,加之其酸性和弱酸性特征,严重影响了区域农作物种植和林业发展。为探究有机-无机复配改良技术对红壤的改良效果,该研究以粉煤灰、腐植酸和秸秆3种物料按正交组合制成9种不同配方的有机-无机复配改良剂,通过土柱培养试验研究了9种复配改良剂对红壤理化性质的影响,并使用模糊物元-熵权模型对土壤改良效果进行综合评价。结果表明,复配改良剂可有效降低土壤容重和酸性、增大总孔隙度和土壤水分常数(饱和含水量、毛管持水量和田间持水量)、提高土壤养分(有机质、速效钾、速效磷、氨氮)和盐分(水溶性Ca^(2+)、Mg^(2+)和K^(+))含量、提升土壤团聚体结构稳定性和抗侵蚀能力。综合考虑改良效果和成本,推荐按粉煤灰21 kg/m^(2)、腐植酸3 g/kg、秸秆0.75 kg/m^(2)构成的有机-无机复配改良剂为红壤改良的最优复配改良配方。 展开更多
关键词 红壤 复配改良剂 土壤改良 土壤理化性质 模糊物元-熵权模型
在线阅读 下载PDF
基于FCM的快速模糊聚类算法研究 被引量:9
16
作者 匡平 朱清新 陈旭东 《电子测量与仪器学报》 CSCD 2007年第2期15-20,共6页
为改善FCM算法的运算性能、获得和原FCM算法等价的分类结果,本文提出了基于加权样本的fFCM(fast FCM)算法。此算法首先构造原待聚类集合的权集,并在权集上应用改进的FCM算法——WFCM(weighted FCM)算法快速获得和原FCM算法近似的分割结... 为改善FCM算法的运算性能、获得和原FCM算法等价的分类结果,本文提出了基于加权样本的fFCM(fast FCM)算法。此算法首先构造原待聚类集合的权集,并在权集上应用改进的FCM算法——WFCM(weighted FCM)算法快速获得和原FCM算法近似的分割结果;然后,将得到的分割结果作为FCM算法的初值再次利用FCM算法以获得最终的分割结果。理论证明和相关实验表明,fFCM不仅能获得和原FCM算法等价的分类结果,还具有良好的运算性能,具有广泛的适用性。 展开更多
关键词 模糊C均值聚类 WEIGHTED fuzzy c-means(WFCM) 加权样本 图像分割
在线阅读 下载PDF
基于并行Apriori的物流路径频繁模式研究 被引量:6
17
作者 曹菁菁 任欣欣 徐贤浩 《计算机工程与应用》 CSCD 北大核心 2019年第11期257-264,共8页
传统的频繁路径挖掘分析主要通过关联规则算法实现,但其在处理大型数据集时,会产生占用内存过多,数据处理速度慢等问题,对此提出一种基于Fuzzy c-means聚类算法的并行Apriori算法模型。该模型通过Fuzzy c-means算法完成对原始数据集的... 传统的频繁路径挖掘分析主要通过关联规则算法实现,但其在处理大型数据集时,会产生占用内存过多,数据处理速度慢等问题,对此提出一种基于Fuzzy c-means聚类算法的并行Apriori算法模型。该模型通过Fuzzy c-means算法完成对原始数据集的聚类分析,将同一区域的物流路径数据划分到内部相似度较高的数据类,并利用Apriori算法对各数据类中的频繁模式进行挖掘分析,进而获得各区域的物流频繁路径。同时通过Hadoop平台实现算法的并行化,有效提高算法运行效率和质量。通过对物流频繁路径的挖掘分析,使管理者更清楚货物流向,可为配送路径优化等决策提供支持。 展开更多
关键词 大数据 频繁路径 HADOOP fuzzy c-means聚类算法 APRIORI算法
在线阅读 下载PDF
融合多颜色空间分量的自适应彩色图像分割 被引量:5
18
作者 刘俊 马燕 +1 位作者 陈坤 李顺宝 《计算机工程与应用》 CSCD 2014年第5期185-189,251,共6页
提出了一种新的简单有效的融合多颜色分量的分割方法,首先在六个不同的颜色空间中选择最佳的待分割颜色分量,然后应用直方图和空间模糊C均值(SFCM)技术对不同颜色分量进行自适应初始分割,最后融合分割结果并进行区域合并。利用该算法在B... 提出了一种新的简单有效的融合多颜色分量的分割方法,首先在六个不同的颜色空间中选择最佳的待分割颜色分量,然后应用直方图和空间模糊C均值(SFCM)技术对不同颜色分量进行自适应初始分割,最后融合分割结果并进行区域合并。利用该算法在Berkeley图像库上进行了大量实验,实验结果表明,与当前一些经典分割算法Mean-shift、FCR、CTM等相比,利用该方法能够获得更好的分割结果以及更优的性能指标。 展开更多
关键词 彩色图像分割 直方图 空间模糊C均值(SFCM) 融合 多颜色空间分量 SPATIAL fuzzy c-means(SFCM)
在线阅读 下载PDF
自然环境下基于颜色聚类和颜色距离的死钩检测 被引量:3
19
作者 李海滨 李鹏 +1 位作者 李玉仙 孙应军 《仪器仪表学报》 EI CAS CSCD 北大核心 2012年第3期609-615,共7页
针对目前火车死钩检测无法自动实现的问题,提出了一种自然环境下基于颜色聚类和颜色距离的死钩检测方法。根据死钩和车厢颜色的对应关系,使用CCD(charge-coupled device)相机获取现场车厢图像并提取前景区域和背景区域的颜色特征,通过... 针对目前火车死钩检测无法自动实现的问题,提出了一种自然环境下基于颜色聚类和颜色距离的死钩检测方法。根据死钩和车厢颜色的对应关系,使用CCD(charge-coupled device)相机获取现场车厢图像并提取前景区域和背景区域的颜色特征,通过分析该颜色信息的差异来判断车厢之间的连接是否为死钩。首先获取特定区域的颜色信息,然后采用FCM(fuzzy C-mean)聚类算法对颜色信息进行分类得到该区域的单一颜色特征,最后根据HLC(hue,lightness,hromatic)颜色空间和人类颜色视觉的相似关系,计算颜色特征对的NBS(national bureau of standards)颜色距离。利用翻车作业现场火车车厢图像进行检测,实验结果验证了该方法具有对颜色差异的高敏感性和识别的准确性,可以满足实际死钩检测的需要。 展开更多
关键词 死钩检测 机器视觉 特征提取 模糊C均值(fuzzy c-mean FCM) NBS距离
在线阅读 下载PDF
基于改进多尺度模糊熵的滚动轴承故障诊断方法 被引量:29
20
作者 郑近德 代俊习 +2 位作者 朱小龙 潘海洋 潘紫微 《振动.测试与诊断》 EI CSCD 北大核心 2018年第5期929-934,1078,共7页
滚动轴承故障诊断的关键是敏感故障特征的提取。多尺度模糊熵(multi-scale fuzzy entropy,简称MFE)是一种衡量时间序列复杂性的有效分析方法,已经被用于滚动轴承振动信号故障特征提取。针对MFE算法中多尺度粗粒化过程存在的缺陷,笔者采... 滚动轴承故障诊断的关键是敏感故障特征的提取。多尺度模糊熵(multi-scale fuzzy entropy,简称MFE)是一种衡量时间序列复杂性的有效分析方法,已经被用于滚动轴承振动信号故障特征提取。针对MFE算法中多尺度粗粒化过程存在的缺陷,笔者采用滑动均值的方式代替粗粒化过程,提出了改进的多尺度模糊熵算法,并通过仿真信号将其与MFE进行了对比分析。在此基础上,提出了一种基于改进多尺度模糊熵与支持向量机的滚动轴承故障诊断方法。最后,将所提故障诊断方法应用于的滚动轴承实验数据分析,并与基于MFE的故障诊断方法进行了对比,结果验证了所提方法的有效性和优越性。 展开更多
关键词 多尺度模糊熵 改进多尺度模糊熵 滚动轴承 故障诊断
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部