Before-after study with the empirical Bayes(EB)method is the state-of-the-art approach for estimating crash modification factors(CMFs).The EB method not only addresses the regression-to-the-mean bias,but also improves...Before-after study with the empirical Bayes(EB)method is the state-of-the-art approach for estimating crash modification factors(CMFs).The EB method not only addresses the regression-to-the-mean bias,but also improves accuracy.However,the performance of the CMFs derived from the EB method has never been fully investigated.This study aims to examine the accuracy of CMFs estimated with the EB method.Artificial realistic data(ARD)and real crash data are used to evaluate the CMFs.The results indicate that:1)The CMFs derived from the EB before-after method are nearly the same as the true values.2)The estimated CMF standard errors do not reflect the true values.The estimation remains at the same level regardless of the pre-assumed CMF standard error.The EB before-after study is not sensitive to the variation of CMF among sites.3)The analyses with real-world traffic and crash data with a dummy treatment indicate that the EB method tends to underestimate the standard error of the CMF.Safety researchers should recognize that the CMF variance may be biased when evaluating safety effectiveness by the EB method.It is necessary to revisit the algorithm for estimating CMF variance with the EB method.展开更多
This paper aims to explore the ability of genetic programming(GP)to achieve the intelligent prediction of tunnelling-induced building deformation considering the multifactor impact.A total of 1099 groups of data obtai...This paper aims to explore the ability of genetic programming(GP)to achieve the intelligent prediction of tunnelling-induced building deformation considering the multifactor impact.A total of 1099 groups of data obtained from 22 geotechnical centrifuge tests are used for model development and analysis using GP.Tunnel volume loss,building eccentricity,soil density,building transverse width,building shear stiffness and building load are selected as the inputs,and shear distortion is selected as the output.Results suggest that the proposed intelligent prediction model is capable of providing a reasonable and accurate prediction of framed building shear distortion due to tunnel construction with realistic conditions,highlighting the important roles of shear stiffness of framed buildings and the pressure beneath the foundation on structural deformation.It has been proven that the proposed model is efficient and feasible to analyze relevant engineering problems by parametric analysis and comparative analysis.The findings demonstrate the great potential of GP approaches in predicting building distortion caused by tunnelling.The proposed equation can be used for the quick and intelligent prediction of tunnelling induced building deformation,providing valuable guidance for the practical design and risk assessment of urban tunnel construction projects.展开更多
基金Project(51978082)supported by the National Natural Science Foundation of ChinaProject(19B022)supported by the Outstanding Youth Foundation of Hunan Education Department,ChinaProject(2019QJCZ056)supported by the Young Teacher Development Foundation of Changsha University of Science&Technology,China。
文摘Before-after study with the empirical Bayes(EB)method is the state-of-the-art approach for estimating crash modification factors(CMFs).The EB method not only addresses the regression-to-the-mean bias,but also improves accuracy.However,the performance of the CMFs derived from the EB method has never been fully investigated.This study aims to examine the accuracy of CMFs estimated with the EB method.Artificial realistic data(ARD)and real crash data are used to evaluate the CMFs.The results indicate that:1)The CMFs derived from the EB before-after method are nearly the same as the true values.2)The estimated CMF standard errors do not reflect the true values.The estimation remains at the same level regardless of the pre-assumed CMF standard error.The EB before-after study is not sensitive to the variation of CMF among sites.3)The analyses with real-world traffic and crash data with a dummy treatment indicate that the EB method tends to underestimate the standard error of the CMF.Safety researchers should recognize that the CMF variance may be biased when evaluating safety effectiveness by the EB method.It is necessary to revisit the algorithm for estimating CMF variance with the EB method.
基金Projects(52108364,52278398)supported by the National Natural Science Foundation of ChinaProject(211179)supported by the Royal Society,UK+1 种基金Project(22CX06051A)supported by the Independent Innovation Research Plan Project of China University of Petroleum(East China)Project(ZR2023QE004)supported by the Shandong Provincial Natural Science Foundation,China。
文摘This paper aims to explore the ability of genetic programming(GP)to achieve the intelligent prediction of tunnelling-induced building deformation considering the multifactor impact.A total of 1099 groups of data obtained from 22 geotechnical centrifuge tests are used for model development and analysis using GP.Tunnel volume loss,building eccentricity,soil density,building transverse width,building shear stiffness and building load are selected as the inputs,and shear distortion is selected as the output.Results suggest that the proposed intelligent prediction model is capable of providing a reasonable and accurate prediction of framed building shear distortion due to tunnel construction with realistic conditions,highlighting the important roles of shear stiffness of framed buildings and the pressure beneath the foundation on structural deformation.It has been proven that the proposed model is efficient and feasible to analyze relevant engineering problems by parametric analysis and comparative analysis.The findings demonstrate the great potential of GP approaches in predicting building distortion caused by tunnelling.The proposed equation can be used for the quick and intelligent prediction of tunnelling induced building deformation,providing valuable guidance for the practical design and risk assessment of urban tunnel construction projects.