Cardiac arrest(CA)is a critical condition in the field of cardiovascular medicine.Despite successful resuscitation,patients continue to have a high mortality rate,largely due to post CA syndrome(PCAS).However,the inju...Cardiac arrest(CA)is a critical condition in the field of cardiovascular medicine.Despite successful resuscitation,patients continue to have a high mortality rate,largely due to post CA syndrome(PCAS).However,the injury and pathophysiological mechanisms underlying PCAS remain unclear.Experimental animal models are valuable tools for exploring the etiology,pathogenesis,and potential interventions for CA and PCAS.Current CA animal models include electrical induction of ventricular fibrillation(VF),myocardial infarction,high potassium,asphyxia,and hemorrhagic shock.Although these models do not fully replicate the complexity of clinical CA,the mechanistic insights they provide remain highly relevant,including post-CA brain injury(PCABI),post-CA myocardial dysfunction(PAMD),systemic ischaemia/reperfusion injury(IRI),and the persistent precipitating pathology.Summarizing the methods of establishing CA models,the challenges encountered in the modeling process,and the mechanisms of PCAS can provide a foundation for developing standardized CA modeling protocols.展开更多
This study introduces a comprehensive theoretical framework for accurately calculating the electronic band-structure of strained long-wavelength InAs/GaSb type-Ⅱsuperlattices.Utilizing an eight-band k·p Hamilto⁃...This study introduces a comprehensive theoretical framework for accurately calculating the electronic band-structure of strained long-wavelength InAs/GaSb type-Ⅱsuperlattices.Utilizing an eight-band k·p Hamilto⁃nian in conjunction with a scattering matrix method,the model effectively incorporates quantum confinement,strain effects,and interface states.This robust and numerically stable approach achieves exceptional agreement with experimental data,offering a reliable tool for analyzing and engineering the band structure of complex multi⁃layer systems.展开更多
Four key stress thresholds exist in the compression process of rocks,i.e.,crack closure stress(σ_(cc)),crack initiation stress(σ_(ci)),crack damage stress(σ_(cd))and compressive strength(σ_(c)).The quantitative id...Four key stress thresholds exist in the compression process of rocks,i.e.,crack closure stress(σ_(cc)),crack initiation stress(σ_(ci)),crack damage stress(σ_(cd))and compressive strength(σ_(c)).The quantitative identifications of the first three stress thresholds are of great significance for characterizing the microcrack growth and damage evolution of rocks under compression.In this paper,a new method based on damage constitutive model is proposed to quantitatively measure the stress thresholds of rocks.Firstly,two different damage constitutive models were constructed based on acoustic emission(AE)counts and Weibull distribution function considering the compaction stages of the rock and the bearing capacity of the damage element.Then,the accumulative AE counts method(ACLM),AE count rate method(CRM)and constitutive model method(CMM)were introduced to determine the stress thresholds of rocks.Finally,the stress thresholds of 9 different rocks were identified by ACLM,CRM,and CMM.The results show that the theoretical stress−strain curves obtained from the two damage constitutive models are in good agreement with that of the experimental data,and the differences between the two damage constitutive models mainly come from the evolutionary differences of the damage variables.The results of the stress thresholds identified by the CMM are in good agreement with those identified by the AE methods,i.e.,ACLM and CRM.Therefore,the proposed CMM can be used to determine the stress thresholds of rocks.展开更多
In this paper two classes of equivalence transform methods for solving ordinary differential equations are proposed. One class of method is the equivalence integral transform method for special differential algebraic ...In this paper two classes of equivalence transform methods for solving ordinary differential equations are proposed. One class of method is the equivalence integral transform method for special differential algebraic problems. The advantage of this class of method is such that the amount of work calculating one integration with parameters becomes that of two interpolations, when the system of nonlinear equations is solved on the right hand side function. The other class of method is the equivalence substitution method for avoiding calculating derivative on the right hand side function. In order to avoid calculation derivatives, two equivalence substitution methods are proposed here. The application instances of some special effect of the equivalence substitution methods are given.展开更多
For the 110 mining method,it is challenging to accurately calculate the support resistance of the roadway due to the lack of understanding of the dynamic movement of the overlying strata in this method.The consequenti...For the 110 mining method,it is challenging to accurately calculate the support resistance of the roadway due to the lack of understanding of the dynamic movement of the overlying strata in this method.The consequential excessive support results in a significant increase in the cost of roadway support.The authors explored the overlying strata movement and roadway deformation of the gob-entry retaining in the 110 mining method to solve this problem.First,the typical stages of the roof-cutting gob-side entry were defined.Second,the mechanical model and calculation formula of the support resistance on the roof were explored.Then,using numerical simulation software,the starting ranges of the specific supports at different stages were verified and the feasibility of the support scheme was examined.Finally,combined with the field measurement data,the stress and the deformation of the gob roadway at different stages under the influence of two mining processes in the 110 mining method were obtained.The numerical simulation results obtained are consistent with the field test results,providing a theoretical basis for precision support at different stages by the 110 mining method.展开更多
Fetr6 is an underground mine using the stope-and-pillar mining method. As there was some evidence regarding pillar failure in this mine, improving works such as roof support and replacing existing pillars with concret...Fetr6 is an underground mine using the stope-and-pillar mining method. As there was some evidence regarding pillar failure in this mine, improving works such as roof support and replacing existing pillars with concrete pillars (CP) were carried out. During the construction of the second CP, in the space between the remaining pillars, one of the pillars failed leading to the progressive failure of other pillars until 4 000 m 2 of mine had collapsed within a few minutes. In this work, this phenomenon is described by applying both numerical and empirical methods and the respective results are compared. The results of numerical modelling are found to be closer to the actual condition than those of the empirical method. Also, a width-to-height (W/H) ratio less than 1, an inadequate support system and the absence of a detailed program for pillar recovery are shown to be the most important causes of the Domino failure in this mine.展开更多
Cross iteration often exists in the computational process of the simulation models, especially for control models. There is a credibility defect tracing problem in the validation of models with cross iteration. In ord...Cross iteration often exists in the computational process of the simulation models, especially for control models. There is a credibility defect tracing problem in the validation of models with cross iteration. In order to resolve this problem, after the problem formulation, a validation theorem on the cross iteration is proposed, and the proof of the theorem is given under the cross iteration circumstance. Meanwhile, applying the proposed theorem, the credibility calculation algorithm is provided, and the solvent of the defect tracing is explained. Further, based on the validation theorem on the cross iteration, a validation method for simulation models with the cross iteration is proposed, which is illustrated by a flowchart step by step. Finally, a validation example of a sixdegree of freedom (DOF) flight vehicle model is provided, and the validation process is performed by using the validation method. The result analysis shows that the method is effective to obtain the credibility of the model and accomplish the defect tracing of the validation.展开更多
The Infrared Hyperspectral Atmospheric SounderⅡ(HIRAS-Ⅱ)is the key equipment on FengYun-3E(FY-3E)satellite,which can realize vertical atmospheric detection,featuring hyper spectral,high sensitivity and high precisio...The Infrared Hyperspectral Atmospheric SounderⅡ(HIRAS-Ⅱ)is the key equipment on FengYun-3E(FY-3E)satellite,which can realize vertical atmospheric detection,featuring hyper spectral,high sensitivity and high precision.To ensure its accuracy of detection,it is necessary to correlate their thermal models to in-orbit da⁃ta.In this work,an investigation of intelligent correlation method named Intelligent Correlation Platform for Ther⁃mal Model(ICP-TM)was established,the advanced Kriging surrogate model and efficient adaptive region opti⁃mization algorithm were introduced.After the correlation with this method for FY-3E/HIRAS-Ⅱ,the results indi⁃cate that compared with the data in orbit,the error of the thermal model has decreased from 5 K to within±1 K in cold case(10℃).Then,the correlated model is validated in hot case(20℃),and the correlated model exhibits good universality.This correlation precision is also much superiors to the general ones like 3 K in other similar lit⁃erature.Furthermore,the process is finished in 8 days using ICP-TM,the efficiency is much better than 3 months based on manual.The results show that the proposed approach significantly enhances the accuracy and efficiency of thermal model,this contributes to the precise thermal control of subsequent infrared optical payloads.展开更多
To enhance the computational efficiency of spatio-temporally discretized phase-field models,we present a high-speed solver specifically designed for the Poisson equations,a component frequently used in the numerical c...To enhance the computational efficiency of spatio-temporally discretized phase-field models,we present a high-speed solver specifically designed for the Poisson equations,a component frequently used in the numerical computation of such models.This efficient solver employs algorithms based on discrete cosine transformations(DCT)or discrete sine transformations(DST)and is not restricted by any spatio-temporal schemes.Our proposed methodology is appropriate for a variety of phase-field models and is especially efficient when combined with flow field systems.Meanwhile,this study has conducted an extensive numerical comparison and found that employing DCT and DST techniques not only yields results comparable to those obtained via the Multigrid(MG)method,a conventional approach used in the resolution of the Poisson equations,but also enhances computational efficiency by over 90%.展开更多
In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the ...In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the rapid determination of optimal embedding impedance for diodes across a specific bandwidth to achieve maximum efficiency through harmonic balance simulations.By optimizing the linear matching circuit with the optimal embedding impedance,the method effectively segregates the simulation of the linear segments from the nonlinear segments in the frequency multiplier circuit,substantially improving the speed of simulations.The design of on-chip linear matching circuits adopts a modular circuit design strategy,incorporating fixed load resistors to simplify the matching challenge.Utilizing this approach,a 340 GHz frequency doubler was developed and measured.The results demonstrate that,across a bandwidth of 330 GHz to 342 GHz,the efficiency of the doubler remains above 10%,with an input power ranging from 98 mW to 141mW and an output power exceeding 13 mW.Notably,at an input power of 141 mW,a peak output power of 21.8 mW was achieved at 334 GHz,corresponding to an efficiency of 15.8%.展开更多
To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based sim...To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based simulation(NNS)method with higher accuracy and better efficiency was proposed.The NNS method consisted of three main steps.First,the parameters of blast loads,including the peak pressures and impulses of cylindrical charges with different aspect ratios(L/D)at different stand-off distances and incident angles were obtained by two-dimensional numerical simulations.Subsequently,incident shape factors of cylindrical charges with arbitrary aspect ratios were predicted by a neural network.Finally,reflected shape factors were derived and implemented into the subroutine of the ABAQUS code to modify the CONWEP model,including modifications of impulse and overpressure.The reliability of the proposed NNS method was verified by related experimental results.Remarkable accuracy improvement was acquired by the proposed NNS method compared with the unmodified CONWEP model.Moreover,huge efficiency superiority was obtained by the proposed NNS method compared with the CEL method.The proposed NNS method showed good accuracy when the scaled distance was greater than 0.2 m/kg^(1/3).It should be noted that there is no need to generate a new dataset again since the blast loads satisfy the similarity law,and the proposed NNS method can be directly used to simulate the blast loads generated by different cylindrical charges.The proposed NNS method with high efficiency and accuracy can be used as an effective method to analyze the dynamic response of structures under blast loads,and it has significant application prospects in designing protective structures.展开更多
This paper examined how microstructure influences the homogenized thermal conductivity of cellular structures and revealed a surface-induced size-dependent effect.This effect is linked to the porous microstructural fe...This paper examined how microstructure influences the homogenized thermal conductivity of cellular structures and revealed a surface-induced size-dependent effect.This effect is linked to the porous microstructural features of cellular structures,which stems from the degree of porosity and the distri-bution of the pores.Unlike the phonon-driven surface effect at the nanoscale,the macro-scale surface mechanism in thermal cellular structures is found to be the microstructure-induced changes in the heat conduction path based on fully resolved 3D numerical simulations.The surface region is determined by the microstructure,characterized by the intrinsic length.With the coupling between extrinsic and intrinsic length scales under the surface mechanism,a surface-enriched multiscale method was devel-oped to accurately capture the complex size-dependent thermal conductivity.The principle of scale separation required by classical multiscale methods is not necessary to be satisfied by the proposed multiscale method.The significant potential of the surface-enriched multiscale method was demon-strated through simulations of the effective thermal conductivity of a thin-walled metamaterial struc-ture.The surface-enriched multiscale method offers higher accuracy compared with the classical multiscale method and superior efficiency over high-fidelity finite element methods.展开更多
The Nei's improved genetic distance(DA)and gene flow(Nm)were measured using sixteen microsatellite markers.Dendograms based on DA genetic distance using the neighbor-joining(NJ)method and STRUCTURE program were co...The Nei's improved genetic distance(DA)and gene flow(Nm)were measured using sixteen microsatellite markers.Dendograms based on DA genetic distance using the neighbor-joining(NJ)method and STRUCTURE program were constructed to analyze the genetic structure and relationship among 10 Chinese indigenous chicken breeds.The results showed that dendograms of DA genetic distance using the NJ method divided the 10 chicken breeds into two main clusters;one consisted of breeds of low weight body(CHA,TTB,XIA,GUS and BAI),the other contained heavier breeds(LAN,DAG,YOU,XIS and LUY).In the lighter breeds,TIB and CHA clustered together,as did XIA and GUS.In the heavier breeds,XIS and LUY was clustered together in one branch,but LAN,DAG and YOU clustered in independent branches.The results were consistent with Nm estimates among the 10 indigenous chicken breeds.The STRUCTURE program properly inferred the presence of genetic structure despite not pre-defining the origin of individuals.The genetic cluster inferred by STRUCTURE was basically the same as that from the DA distance clustering method.An advantage of the STRUCTURE program was its ability to identify the migrants and admixed individuals in the 10 chicken populations;this could not be achieved by use of the DA distance clustering method.展开更多
To properly simulate hard rock with a high ratio of the uniaxial compressive strength to tensile strength(UCS/TS) and realistic strength-failure envelope,the rock deformation and mechanical characteristics were discus...To properly simulate hard rock with a high ratio of the uniaxial compressive strength to tensile strength(UCS/TS) and realistic strength-failure envelope,the rock deformation and mechanical characteristics were discussed in detail when the particle simulation method with the clump parallel-bond model(CPBM) was used to conduct a series of numerical experiments at the specimen scale.Meanwhile,the effects of the loading procedure and crack density on the mechanical behavior of a specimen,which was modeled by the particle simulation method with the CPBM,were investigated.The related numerical results have demonstrated that:1) The uniaxial compressive strength(UCS),tensile strength(TS) and elastic modulus are overestimated when the conventional loading procedure is used in the particle simulation method with the CPBM; 2) The elastic modulus,strength and UCS/TS decrease,while Poisson ratio increases with the increase of the crack density in the particle simulation method with the CPBM; 3) The particle simulation method with the CPBM can be used to reproduce a high value of UCS/TS(>10),as well as a high friction angle and reasonable cohesion strength; 4) As the confining pressure increases,both the peak strength of the simulated specimen and the number of microscopic cracks increase,but the ratio of tensile cracks number to shear cracks number decreases in the particle simulation method with the CPBM; 5) Compared with the conventional parallel-bond model,the CPBM can be used to reproduce more accurate results for simulating the rock deformation and mechanical characteristics.展开更多
The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions(PFC^(3D))based on three-dimensional discrete elem...The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions(PFC^(3D))based on three-dimensional discrete element method.A randomly generating algorithm was proposed to capture the three-dimensional irregular shape of coarse aggregate.And then,modeling algorithm and method for graded aggregates were built.Based on the combination of modeling of coarse aggregates,asphalt mastic and air voids,three-dimensional virtual sample of asphalt mixture was modeled by using PFC^(3D).Virtual tests for penetration test of aggregate and uniaxial creep test of asphalt mixture were built and conducted by using PFC^(3D).By comparison of the testing results between virtual tests and actual laboratory tests,the validity of the microstructure modeling and virtual test built in this study was verified.Additionally,compared with laboratory test,the virtual test is easier to conduct and has less variability.It is proved that microstructure modeling and virtual test based on three-dimensional discrete element method is a promising way to conduct research of asphalt mixture.展开更多
An optimization model of underground mining method selection was established on the basis of the unascertained measurement theory.Considering the geologic conditions,technology,economy and safety production,ten main f...An optimization model of underground mining method selection was established on the basis of the unascertained measurement theory.Considering the geologic conditions,technology,economy and safety production,ten main factors influencing the selection of mining method were taken into account,and the comprehensive evaluation index system of mining method selection was constructed.The unascertained evaluation indices corresponding to the selected factors for the actual situation were solved both qualitatively and quantitatively.New measurement standards were constructed.Then,the unascertained measurement function of each evaluation index was established.The index weights of the factors were calculated by entropy theory,and credible degree recognition criteria were established according to the unascertained measurement theory.The results of mining method evaluation were obtained using the credible degree criteria,thus the best underground mining method was determined.Furthermore,this model was employed for the comprehensive evaluation and selection of the chosen standard mining methods in Xinli Gold Mine in Sanshandao of China.The results show that the relative superiority degrees of mining methods can be calculated using the unascertained measurement optimization model,so the optimal method can be easily determined.Meanwhile,the proposed method can take into account large amount of uncertain information in mining method selection,which can provide an effective way for selecting the optimal underground mining method.展开更多
Model validation and updating is critical to model credibility growth. In order to assess model credibility quantitatively and locate model error precisely, a new dynamic validation method based on extremum field mean...Model validation and updating is critical to model credibility growth. In order to assess model credibility quantitatively and locate model error precisely, a new dynamic validation method based on extremum field mean mode decomposition(EMMD) and the Prony method is proposed in this paper. Firstly, complex dynamic responses from models and real systems are processed into stationary components by EMMD. These components always have definite physical meanings which can be the evidence about rough model error location. Secondly, the Prony method is applied to identify the features of each EMMD component. Amplitude similarity, frequency similarity, damping similarity and phase similarity are defined to describe the similarity of dynamic responses.Then quantitative validation metrics are obtained based on the improved entropy weight and energy proportion. Precise model error location is realized based on the physical meanings of these features. The application of this method in aircraft controller design provides evidence about its feasibility and usability.展开更多
Against the background of the sand-flow foundation treatment engineering of Guangzhou Zhoutouzui variable cross-section immersed tunnel, a kind of sand deposit-detecting method was devised on the basis of full-scale m...Against the background of the sand-flow foundation treatment engineering of Guangzhou Zhoutouzui variable cross-section immersed tunnel, a kind of sand deposit-detecting method was devised on the basis of full-scale model test of sand-flow method. The real-time data of sand-deposit height and radius were obtained by the self-developed sand-deposit detectors. The test results show that the detecting method is simple and has high precision. In the use of sand-flow method, the sand-carrying capability of fluid is limited, and sand particles are all transported to the sand-deposit periphery through crater, gap and chutes after the sand deposit formed. The diffusion range of the particles outside the sand-deposit does not exceed 2.0 m. Severe sorting of sand particles is not observed because of the unique oblique-layered depositing process. The temporal and spatial distributions of gap and chutes directly affect the sand-deposit expansion, and the expansion trend of the average sand-deposit radius accords with quadratic time-history curve.展开更多
基金supported by the National Key Research and Development Program(2021YFC3002205)the Postgraduate Research and Innovation Program of Tianjin Municipal Education Commission(2022BKY113),China.
文摘Cardiac arrest(CA)is a critical condition in the field of cardiovascular medicine.Despite successful resuscitation,patients continue to have a high mortality rate,largely due to post CA syndrome(PCAS).However,the injury and pathophysiological mechanisms underlying PCAS remain unclear.Experimental animal models are valuable tools for exploring the etiology,pathogenesis,and potential interventions for CA and PCAS.Current CA animal models include electrical induction of ventricular fibrillation(VF),myocardial infarction,high potassium,asphyxia,and hemorrhagic shock.Although these models do not fully replicate the complexity of clinical CA,the mechanistic insights they provide remain highly relevant,including post-CA brain injury(PCABI),post-CA myocardial dysfunction(PAMD),systemic ischaemia/reperfusion injury(IRI),and the persistent precipitating pathology.Summarizing the methods of establishing CA models,the challenges encountered in the modeling process,and the mechanisms of PCAS can provide a foundation for developing standardized CA modeling protocols.
文摘This study introduces a comprehensive theoretical framework for accurately calculating the electronic band-structure of strained long-wavelength InAs/GaSb type-Ⅱsuperlattices.Utilizing an eight-band k·p Hamilto⁃nian in conjunction with a scattering matrix method,the model effectively incorporates quantum confinement,strain effects,and interface states.This robust and numerically stable approach achieves exceptional agreement with experimental data,offering a reliable tool for analyzing and engineering the band structure of complex multi⁃layer systems.
基金Projects(2021RC3007,2020RC3090)supported by the Science and Technology Innovation Program of Hunan Province,ChinaProjects(52374150,52174099)supported by the National Natural Science Foundation of China。
文摘Four key stress thresholds exist in the compression process of rocks,i.e.,crack closure stress(σ_(cc)),crack initiation stress(σ_(ci)),crack damage stress(σ_(cd))and compressive strength(σ_(c)).The quantitative identifications of the first three stress thresholds are of great significance for characterizing the microcrack growth and damage evolution of rocks under compression.In this paper,a new method based on damage constitutive model is proposed to quantitatively measure the stress thresholds of rocks.Firstly,two different damage constitutive models were constructed based on acoustic emission(AE)counts and Weibull distribution function considering the compaction stages of the rock and the bearing capacity of the damage element.Then,the accumulative AE counts method(ACLM),AE count rate method(CRM)and constitutive model method(CMM)were introduced to determine the stress thresholds of rocks.Finally,the stress thresholds of 9 different rocks were identified by ACLM,CRM,and CMM.The results show that the theoretical stress−strain curves obtained from the two damage constitutive models are in good agreement with that of the experimental data,and the differences between the two damage constitutive models mainly come from the evolutionary differences of the damage variables.The results of the stress thresholds identified by the CMM are in good agreement with those identified by the AE methods,i.e.,ACLM and CRM.Therefore,the proposed CMM can be used to determine the stress thresholds of rocks.
基金The project was supported by the National Natural Science Faundation of China
文摘In this paper two classes of equivalence transform methods for solving ordinary differential equations are proposed. One class of method is the equivalence integral transform method for special differential algebraic problems. The advantage of this class of method is such that the amount of work calculating one integration with parameters becomes that of two interpolations, when the system of nonlinear equations is solved on the right hand side function. The other class of method is the equivalence substitution method for avoiding calculating derivative on the right hand side function. In order to avoid calculation derivatives, two equivalence substitution methods are proposed here. The application instances of some special effect of the equivalence substitution methods are given.
基金Project(51674265) supported by the National Natural Science Foundation of ChinaProjects(2018YFC0603705,2016YFC0600901) supported by the State Key Research Development Program of ChinaProject supported by the Yueqi Outstanding Scholar Award Program of China University of Mining&Technology,Beijing,China。
文摘For the 110 mining method,it is challenging to accurately calculate the support resistance of the roadway due to the lack of understanding of the dynamic movement of the overlying strata in this method.The consequential excessive support results in a significant increase in the cost of roadway support.The authors explored the overlying strata movement and roadway deformation of the gob-entry retaining in the 110 mining method to solve this problem.First,the typical stages of the roof-cutting gob-side entry were defined.Second,the mechanical model and calculation formula of the support resistance on the roof were explored.Then,using numerical simulation software,the starting ranges of the specific supports at different stages were verified and the feasibility of the support scheme was examined.Finally,combined with the field measurement data,the stress and the deformation of the gob roadway at different stages under the influence of two mining processes in the 110 mining method were obtained.The numerical simulation results obtained are consistent with the field test results,providing a theoretical basis for precision support at different stages by the 110 mining method.
文摘Fetr6 is an underground mine using the stope-and-pillar mining method. As there was some evidence regarding pillar failure in this mine, improving works such as roof support and replacing existing pillars with concrete pillars (CP) were carried out. During the construction of the second CP, in the space between the remaining pillars, one of the pillars failed leading to the progressive failure of other pillars until 4 000 m 2 of mine had collapsed within a few minutes. In this work, this phenomenon is described by applying both numerical and empirical methods and the respective results are compared. The results of numerical modelling are found to be closer to the actual condition than those of the empirical method. Also, a width-to-height (W/H) ratio less than 1, an inadequate support system and the absence of a detailed program for pillar recovery are shown to be the most important causes of the Domino failure in this mine.
基金supported by the National Natural Science Foundation of China(61374164)
文摘Cross iteration often exists in the computational process of the simulation models, especially for control models. There is a credibility defect tracing problem in the validation of models with cross iteration. In order to resolve this problem, after the problem formulation, a validation theorem on the cross iteration is proposed, and the proof of the theorem is given under the cross iteration circumstance. Meanwhile, applying the proposed theorem, the credibility calculation algorithm is provided, and the solvent of the defect tracing is explained. Further, based on the validation theorem on the cross iteration, a validation method for simulation models with the cross iteration is proposed, which is illustrated by a flowchart step by step. Finally, a validation example of a sixdegree of freedom (DOF) flight vehicle model is provided, and the validation process is performed by using the validation method. The result analysis shows that the method is effective to obtain the credibility of the model and accomplish the defect tracing of the validation.
基金Supported by the National Key Research and Development Program of China(2022YFB3904803)。
文摘The Infrared Hyperspectral Atmospheric SounderⅡ(HIRAS-Ⅱ)is the key equipment on FengYun-3E(FY-3E)satellite,which can realize vertical atmospheric detection,featuring hyper spectral,high sensitivity and high precision.To ensure its accuracy of detection,it is necessary to correlate their thermal models to in-orbit da⁃ta.In this work,an investigation of intelligent correlation method named Intelligent Correlation Platform for Ther⁃mal Model(ICP-TM)was established,the advanced Kriging surrogate model and efficient adaptive region opti⁃mization algorithm were introduced.After the correlation with this method for FY-3E/HIRAS-Ⅱ,the results indi⁃cate that compared with the data in orbit,the error of the thermal model has decreased from 5 K to within±1 K in cold case(10℃).Then,the correlated model is validated in hot case(20℃),and the correlated model exhibits good universality.This correlation precision is also much superiors to the general ones like 3 K in other similar lit⁃erature.Furthermore,the process is finished in 8 days using ICP-TM,the efficiency is much better than 3 months based on manual.The results show that the proposed approach significantly enhances the accuracy and efficiency of thermal model,this contributes to the precise thermal control of subsequent infrared optical payloads.
基金Supported by Shanxi Province Natural Science Research(202203021212249)Special/Youth Foundation of Taiyuan University of Technology(2022QN101)+3 种基金National Natural Science Foundation of China(12301556)Research Project Supported by Shanxi Scholarship Council of China(2021-029)International Cooperation Base and Platform Project of Shanxi Province(202104041101019)Basic Research Plan of Shanxi Province(202203021211129)。
文摘To enhance the computational efficiency of spatio-temporally discretized phase-field models,we present a high-speed solver specifically designed for the Poisson equations,a component frequently used in the numerical computation of such models.This efficient solver employs algorithms based on discrete cosine transformations(DCT)or discrete sine transformations(DST)and is not restricted by any spatio-temporal schemes.Our proposed methodology is appropriate for a variety of phase-field models and is especially efficient when combined with flow field systems.Meanwhile,this study has conducted an extensive numerical comparison and found that employing DCT and DST techniques not only yields results comparable to those obtained via the Multigrid(MG)method,a conventional approach used in the resolution of the Poisson equations,but also enhances computational efficiency by over 90%.
基金Supported by the Beijing Municipal Science&Technology Commission(Z211100004421012),the Key Reaserch and Development Pro⁃gram of China(2022YFF0605902)。
文摘In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the rapid determination of optimal embedding impedance for diodes across a specific bandwidth to achieve maximum efficiency through harmonic balance simulations.By optimizing the linear matching circuit with the optimal embedding impedance,the method effectively segregates the simulation of the linear segments from the nonlinear segments in the frequency multiplier circuit,substantially improving the speed of simulations.The design of on-chip linear matching circuits adopts a modular circuit design strategy,incorporating fixed load resistors to simplify the matching challenge.Utilizing this approach,a 340 GHz frequency doubler was developed and measured.The results demonstrate that,across a bandwidth of 330 GHz to 342 GHz,the efficiency of the doubler remains above 10%,with an input power ranging from 98 mW to 141mW and an output power exceeding 13 mW.Notably,at an input power of 141 mW,a peak output power of 21.8 mW was achieved at 334 GHz,corresponding to an efficiency of 15.8%.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52271317 and 52071149)the Fundamental Research Funds for the Central Universities(HUST:2019kfy XJJS007)。
文摘To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based simulation(NNS)method with higher accuracy and better efficiency was proposed.The NNS method consisted of three main steps.First,the parameters of blast loads,including the peak pressures and impulses of cylindrical charges with different aspect ratios(L/D)at different stand-off distances and incident angles were obtained by two-dimensional numerical simulations.Subsequently,incident shape factors of cylindrical charges with arbitrary aspect ratios were predicted by a neural network.Finally,reflected shape factors were derived and implemented into the subroutine of the ABAQUS code to modify the CONWEP model,including modifications of impulse and overpressure.The reliability of the proposed NNS method was verified by related experimental results.Remarkable accuracy improvement was acquired by the proposed NNS method compared with the unmodified CONWEP model.Moreover,huge efficiency superiority was obtained by the proposed NNS method compared with the CEL method.The proposed NNS method showed good accuracy when the scaled distance was greater than 0.2 m/kg^(1/3).It should be noted that there is no need to generate a new dataset again since the blast loads satisfy the similarity law,and the proposed NNS method can be directly used to simulate the blast loads generated by different cylindrical charges.The proposed NNS method with high efficiency and accuracy can be used as an effective method to analyze the dynamic response of structures under blast loads,and it has significant application prospects in designing protective structures.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFB1714600)the National Natural Science Foundation of China(Grant No.52175095)the Young Top-Notch Talent Cultivation Program of Hubei Province of China.
文摘This paper examined how microstructure influences the homogenized thermal conductivity of cellular structures and revealed a surface-induced size-dependent effect.This effect is linked to the porous microstructural features of cellular structures,which stems from the degree of porosity and the distri-bution of the pores.Unlike the phonon-driven surface effect at the nanoscale,the macro-scale surface mechanism in thermal cellular structures is found to be the microstructure-induced changes in the heat conduction path based on fully resolved 3D numerical simulations.The surface region is determined by the microstructure,characterized by the intrinsic length.With the coupling between extrinsic and intrinsic length scales under the surface mechanism,a surface-enriched multiscale method was devel-oped to accurately capture the complex size-dependent thermal conductivity.The principle of scale separation required by classical multiscale methods is not necessary to be satisfied by the proposed multiscale method.The significant potential of the surface-enriched multiscale method was demon-strated through simulations of the effective thermal conductivity of a thin-walled metamaterial struc-ture.The surface-enriched multiscale method offers higher accuracy compared with the classical multiscale method and superior efficiency over high-fidelity finite element methods.
基金supported by the Program of National Technological Basis from Ministry of Science and Technology of China(No.2005DKA21101)the National Natural Science Foundation of China(No.30700572)
文摘The Nei's improved genetic distance(DA)and gene flow(Nm)were measured using sixteen microsatellite markers.Dendograms based on DA genetic distance using the neighbor-joining(NJ)method and STRUCTURE program were constructed to analyze the genetic structure and relationship among 10 Chinese indigenous chicken breeds.The results showed that dendograms of DA genetic distance using the NJ method divided the 10 chicken breeds into two main clusters;one consisted of breeds of low weight body(CHA,TTB,XIA,GUS and BAI),the other contained heavier breeds(LAN,DAG,YOU,XIS and LUY).In the lighter breeds,TIB and CHA clustered together,as did XIA and GUS.In the heavier breeds,XIS and LUY was clustered together in one branch,but LAN,DAG and YOU clustered in independent branches.The results were consistent with Nm estimates among the 10 indigenous chicken breeds.The STRUCTURE program properly inferred the presence of genetic structure despite not pre-defining the origin of individuals.The genetic cluster inferred by STRUCTURE was basically the same as that from the DA distance clustering method.An advantage of the STRUCTURE program was its ability to identify the migrants and admixed individuals in the 10 chicken populations;this could not be achieved by use of the DA distance clustering method.
基金Project(11272359) supported by the National Natural Science Foundation of China
文摘To properly simulate hard rock with a high ratio of the uniaxial compressive strength to tensile strength(UCS/TS) and realistic strength-failure envelope,the rock deformation and mechanical characteristics were discussed in detail when the particle simulation method with the clump parallel-bond model(CPBM) was used to conduct a series of numerical experiments at the specimen scale.Meanwhile,the effects of the loading procedure and crack density on the mechanical behavior of a specimen,which was modeled by the particle simulation method with the CPBM,were investigated.The related numerical results have demonstrated that:1) The uniaxial compressive strength(UCS),tensile strength(TS) and elastic modulus are overestimated when the conventional loading procedure is used in the particle simulation method with the CPBM; 2) The elastic modulus,strength and UCS/TS decrease,while Poisson ratio increases with the increase of the crack density in the particle simulation method with the CPBM; 3) The particle simulation method with the CPBM can be used to reproduce a high value of UCS/TS(>10),as well as a high friction angle and reasonable cohesion strength; 4) As the confining pressure increases,both the peak strength of the simulated specimen and the number of microscopic cracks increase,but the ratio of tensile cracks number to shear cracks number decreases in the particle simulation method with the CPBM; 5) Compared with the conventional parallel-bond model,the CPBM can be used to reproduce more accurate results for simulating the rock deformation and mechanical characteristics.
基金Project(51378006) supported by National Natural Science Foundation of ChinaProject(141076) supported by Huoyingdong Foundation of the Ministry of Education of China+1 种基金Project(2242015R30027) supported by Excellent Young Teacher Program of Southeast University,ChinaProject(BK20140109) supported by the Natural Science Foundation of Jiangsu Province,China
文摘The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions(PFC^(3D))based on three-dimensional discrete element method.A randomly generating algorithm was proposed to capture the three-dimensional irregular shape of coarse aggregate.And then,modeling algorithm and method for graded aggregates were built.Based on the combination of modeling of coarse aggregates,asphalt mastic and air voids,three-dimensional virtual sample of asphalt mixture was modeled by using PFC^(3D).Virtual tests for penetration test of aggregate and uniaxial creep test of asphalt mixture were built and conducted by using PFC^(3D).By comparison of the testing results between virtual tests and actual laboratory tests,the validity of the microstructure modeling and virtual test built in this study was verified.Additionally,compared with laboratory test,the virtual test is easier to conduct and has less variability.It is proved that microstructure modeling and virtual test based on three-dimensional discrete element method is a promising way to conduct research of asphalt mixture.
基金Project(2007CB209402) supported by the National Basic Research Program of China Project(SKLGDUEK0906) supported by the Research Fund of State Key Laboratory for Geomechanics and Deep Underground Engineering of China
文摘An optimization model of underground mining method selection was established on the basis of the unascertained measurement theory.Considering the geologic conditions,technology,economy and safety production,ten main factors influencing the selection of mining method were taken into account,and the comprehensive evaluation index system of mining method selection was constructed.The unascertained evaluation indices corresponding to the selected factors for the actual situation were solved both qualitatively and quantitatively.New measurement standards were constructed.Then,the unascertained measurement function of each evaluation index was established.The index weights of the factors were calculated by entropy theory,and credible degree recognition criteria were established according to the unascertained measurement theory.The results of mining method evaluation were obtained using the credible degree criteria,thus the best underground mining method was determined.Furthermore,this model was employed for the comprehensive evaluation and selection of the chosen standard mining methods in Xinli Gold Mine in Sanshandao of China.The results show that the relative superiority degrees of mining methods can be calculated using the unascertained measurement optimization model,so the optimal method can be easily determined.Meanwhile,the proposed method can take into account large amount of uncertain information in mining method selection,which can provide an effective way for selecting the optimal underground mining method.
基金supported by the Nature Science Foundation of Shaanxi Province(2012JM8020)
文摘Model validation and updating is critical to model credibility growth. In order to assess model credibility quantitatively and locate model error precisely, a new dynamic validation method based on extremum field mean mode decomposition(EMMD) and the Prony method is proposed in this paper. Firstly, complex dynamic responses from models and real systems are processed into stationary components by EMMD. These components always have definite physical meanings which can be the evidence about rough model error location. Secondly, the Prony method is applied to identify the features of each EMMD component. Amplitude similarity, frequency similarity, damping similarity and phase similarity are defined to describe the similarity of dynamic responses.Then quantitative validation metrics are obtained based on the improved entropy weight and energy proportion. Precise model error location is realized based on the physical meanings of these features. The application of this method in aircraft controller design provides evidence about its feasibility and usability.
基金Project(51108190) supported by the National Natural Science Foundation of ChinaProject(2012ZC27) supported by the Independence Research Subject from State Key Laboratory of Subtropical Building Science,ChinaProject(GTCC 2008-253) supported by the Research Subject from Guangzhou City,China
文摘Against the background of the sand-flow foundation treatment engineering of Guangzhou Zhoutouzui variable cross-section immersed tunnel, a kind of sand deposit-detecting method was devised on the basis of full-scale model test of sand-flow method. The real-time data of sand-deposit height and radius were obtained by the self-developed sand-deposit detectors. The test results show that the detecting method is simple and has high precision. In the use of sand-flow method, the sand-carrying capability of fluid is limited, and sand particles are all transported to the sand-deposit periphery through crater, gap and chutes after the sand deposit formed. The diffusion range of the particles outside the sand-deposit does not exceed 2.0 m. Severe sorting of sand particles is not observed because of the unique oblique-layered depositing process. The temporal and spatial distributions of gap and chutes directly affect the sand-deposit expansion, and the expansion trend of the average sand-deposit radius accords with quadratic time-history curve.