期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于Transformer的逐通道点云分析网络
1
作者 冯凯浩 陶志勇 +2 位作者 李衡 李铭朗 林森 《电子测量与仪器学报》 北大核心 2025年第2期49-59,共11页
三维点云能够充分描述目标对象的几何信息,在自动驾驶、医学影像和机器人等领域有着广泛的应用前景。然而,现有方法在处理不同通道间的特征时缺乏差异化,同时对低级空间坐标和高级语义特征采用统一的编码策略,进而导致点云特征提取不全... 三维点云能够充分描述目标对象的几何信息,在自动驾驶、医学影像和机器人等领域有着广泛的应用前景。然而,现有方法在处理不同通道间的特征时缺乏差异化,同时对低级空间坐标和高级语义特征采用统一的编码策略,进而导致点云特征提取不全面。因此,提出了基于Transformer的逐通道点云分析网络。首先,为了克服传统图卷积在混合通道中难以区分有效信息的挑战,设计了一种深度可分离边缘卷积,可以在逐通道特征提取时保留局部几何信息的同时,显著提升通道间的区分能力。其次,针对Transformer在低级空间坐标和高级语义特征中采用统一编码方式,导致信息提取不足的问题,提出了两种特征编码策略,自适应位置编码和空间上下文编码,分别用于探索低级空间中的隐式几何结构和高级空间中的复杂上下文关系。最后,提出了一种有效的融合策略,可以形成更具区分性的特征表示。为了充分证明所提出模型的有效性,在公开数据集ModelNet40和ScanObjectNN上进行点云分类实验,总体分类精度分别达到93.7%和83.2%,在公开数据集ShapeNet Part上,整体部件分割的平均交并比达到86.0%。因而,研究方法在分类和分割任务中均具有先进的性能。 展开更多
关键词 点云分类 分割 深度可分离卷积 Transfomer 融合算法 modelnet40
在线阅读 下载PDF
融合kd tree邻域查询的深度学习点云分类网络 被引量:15
2
作者 马杰 王旭娇 +2 位作者 马鹏飞 杨立闯 王楠楠 《深圳大学学报(理工版)》 EI CAS CSCD 北大核心 2020年第1期79-83,共5页
为解决PointNet++精度较低、耗时较长,且对输入点的噪声敏感的缺陷,引入一种高效的k维树(k-dimensional tree,kd tree)邻域查询方法,通过构建kd tree查找查询点周围指定半径内的近邻点,构造局部区域集,完成在PointNet++分组层上的局部... 为解决PointNet++精度较低、耗时较长,且对输入点的噪声敏感的缺陷,引入一种高效的k维树(k-dimensional tree,kd tree)邻域查询方法,通过构建kd tree查找查询点周围指定半径内的近邻点,构造局部区域集,完成在PointNet++分组层上的局部特征提取.针对原网络训练过程中存在的过拟合问题,引入随机失活(dropout)正则化,减少网络收敛训练的时间.在Ubuntu14.04系统下搭建TensorFlow的图形处理器深度学习环境,并在ModelNet40数据集上进行训练和测试.实验结果表明,分别为当查询半径为0.1、0.2和0.3时,该查询方法的分类准确率分别为91.1%、92.1%和94.3%,皆优于PointNet++方法,且网络训练用时更短.改进后的结构在斯坦福三维语义分析数据集(Stanford 3D semantic parsing dataset)上进行语义分割实验平均交并比(mean intersection over union,MIoU)达57.2%,且其对于遮挡物体的鲁棒性更高. 展开更多
关键词 计算机神经网络 深度神经网络 深度学习 点云分类 邻域查询 k维树 modelnet40
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部