In this paper, we apply the recursive genetic programming (RGP) approach to the cognition of a system, and then proceed to the detecting procedure for structural changes in the system whose components are of long memo...In this paper, we apply the recursive genetic programming (RGP) approach to the cognition of a system, and then proceed to the detecting procedure for structural changes in the system whose components are of long memory. This approach is adaptive and model-free, which can simulate the individual activities of the system's participants, therefore, it has strong ability to recognize the operating mechanism of the system. Based on the previous cognition about the system, a testing statistic is developed for the detection of structural changes in the system. Furthermore, an example is presented to illustrate the validity and practical value of the proposed.展开更多
This paper provides an improved model-free adaptive control(IMFAC)strategy for solving the surface vessel trajectory tracking issue with time delay and restricted disturbance.Firstly,the original nonlinear time-delay ...This paper provides an improved model-free adaptive control(IMFAC)strategy for solving the surface vessel trajectory tracking issue with time delay and restricted disturbance.Firstly,the original nonlinear time-delay system is transformed into a structure consisting of an unknown residual term and a parameter term with control inputs using a local compact form dynamic linearization(local-CFDL).To take advantage of the resulting structure,use a discrete-time extended state observer(DESO)to estimate the unknown residual factor.Then,according to the study,the inclusion of a time delay has no effect on the linearization structure,and an improved control approach is provided,in which DESO is used to adjust for uncertainties.Furthermore,a DESO-based event-triggered model-free adaptive control(ET-DESO-MFAC)is established by designing event-triggered conditions to assure Lyapunov stability.Only when the system’s indicator fulfills the provided event-triggered condition will the control input signal be updated;otherwise,the control input will stay the same as it is at the last trigger moment.A coordinate compensation approach is developed to reduce the steady-state inaccuracy of trajectory tracking.Finally,simulation experiments are used to assess the effectiveness of the proposed technique for trajectory tracking.展开更多
文摘In this paper, we apply the recursive genetic programming (RGP) approach to the cognition of a system, and then proceed to the detecting procedure for structural changes in the system whose components are of long memory. This approach is adaptive and model-free, which can simulate the individual activities of the system's participants, therefore, it has strong ability to recognize the operating mechanism of the system. Based on the previous cognition about the system, a testing statistic is developed for the detection of structural changes in the system. Furthermore, an example is presented to illustrate the validity and practical value of the proposed.
基金supported by the Natural Science Foundation of Jiangsu Province(BK20201159).
文摘This paper provides an improved model-free adaptive control(IMFAC)strategy for solving the surface vessel trajectory tracking issue with time delay and restricted disturbance.Firstly,the original nonlinear time-delay system is transformed into a structure consisting of an unknown residual term and a parameter term with control inputs using a local compact form dynamic linearization(local-CFDL).To take advantage of the resulting structure,use a discrete-time extended state observer(DESO)to estimate the unknown residual factor.Then,according to the study,the inclusion of a time delay has no effect on the linearization structure,and an improved control approach is provided,in which DESO is used to adjust for uncertainties.Furthermore,a DESO-based event-triggered model-free adaptive control(ET-DESO-MFAC)is established by designing event-triggered conditions to assure Lyapunov stability.Only when the system’s indicator fulfills the provided event-triggered condition will the control input signal be updated;otherwise,the control input will stay the same as it is at the last trigger moment.A coordinate compensation approach is developed to reduce the steady-state inaccuracy of trajectory tracking.Finally,simulation experiments are used to assess the effectiveness of the proposed technique for trajectory tracking.
文摘中低压直流配电系统中直流变压器(DCtransformer,DCT)常采用模型预测控制(model predictive control,MPC)来改善系统的动态响应特性,但其参数依赖性强与传输功率不均衡是限制MPC发展的关键性因素。为此提出了一种无模型预测控制(modelfreepredictivecontrol,MFPC)方法,其具备参数不敏感与传输功率自均衡的优势。首先,建立双有源桥(dual active bridge,DAB)的超局部模型,通过辨识模型中的集总扰动,来实时计算无源器件与未建模部分参数,提高了控制系统的鲁棒性。然后,将集总扰动与输入均压集成到输出电压的离散模型,在不增加额外计算量的情况下,提高了DCT在参数不匹配工况下的输出电压精度与功率均衡能力。最后,搭建了一套120V/600W的实验样机,验证了所提控制方法的有效性和优越性。