A fuzzy modeling method for complex systems is studied. The notation of general stochastic neural network (GSNN) is presented and a new modeling method is given based on the combination of the modified Takagi and Suge...A fuzzy modeling method for complex systems is studied. The notation of general stochastic neural network (GSNN) is presented and a new modeling method is given based on the combination of the modified Takagi and Sugeno's (MTS) fuzzy model and one-order GSNN. Using expectation-maximization(EM) algorithm, parameter estimation and model selection procedures are given. It avoids the shortcomings brought by other methods such as BP algorithm, when the number of parameters is large, BP algorithm is still difficult to apply directly without fine tuning and subjective tinkering. Finally, the simulated example demonstrates the effectiveness.展开更多
The effects of cyanidation conditions on gold dissolution were studied by artificial neural network (ANN) modeling. Eighty-five datasets were used to estimate the gold dissolution. Six input parameters, time, solid ...The effects of cyanidation conditions on gold dissolution were studied by artificial neural network (ANN) modeling. Eighty-five datasets were used to estimate the gold dissolution. Six input parameters, time, solid percentage, P50 of particle, NaCN content in cyanide media, temperature of solution and pH value were used. For selecting the best model, the outputs of models were compared with measured data. A fourth-layer ANN is found to be optimum with architecture of twenty, fifteen, ten and five neurons in the first, second, third and fourth hidden layers, respectively, and one neuron in output layer. The results of artificial neural network show that the square correlation coefficients (R2) of training, testing and validating data achieve 0.999 1, 0.996 4 and 0.9981, respectively. Sensitivity analysis shows that the highest and lowest effects on the gold dissolution rise from time and pH, respectively It is verified that the predicted values of ANN coincide well with the experimental results.展开更多
Sonic log is the most versatile reservoir evaluation tool that has been introduced to the industry. Compaction,erosion and over pressurized zone can be evaluated by sonic log.Also primary porosity can be determined fr...Sonic log is the most versatile reservoir evaluation tool that has been introduced to the industry. Compaction,erosion and over pressurized zone can be evaluated by sonic log.Also primary porosity can be determined from compressional sonic wave transit time and secondary porosity will be calculated by comparing sonic derived porosity log with neutron and density based porosity log.On the other hand all of the rock mechanical properties can be evaluated using simultaneous use of compressional and shear sonic wave transit time.It is essential to have展开更多
Now, a rapidly growing concern for the environmental protection and resource utilization has stimulated many new activities in the in dustrialized world for coping with urgent environmental problems created by the ste...Now, a rapidly growing concern for the environmental protection and resource utilization has stimulated many new activities in the in dustrialized world for coping with urgent environmental problems created by the steadily increasing consumption of industrial products. Increasingly stringent r egulations and widely expressed public concern for the environment highlight the importance of disposing solid waste generated from industrial and consumable pr oducts. How to efficiently recycle and tackle this problem has been a very impo rtant issue over the world. Designing products for recyclability is driven by environmental and economic goals. To obtain good recyclability, two measures can be adopted. One is better recycling strategy and technology; the other is design for recycling (DFR). The recycling strategies of products generally inclu de: reuse, service, remanufacturing, recycling of production scraps during the p roduct usage, recycle (separation first) and disposal. Recyclability assessment is a very important content in DFR. This paper first discusses the content of D FR and strategies and types related to products recyclability, and points out th at easy or difficult recyclability depends on the design phase. Then method and procedure of recyclability assessment based on ANN is explored in detail. The pr ocess consists of selection of the ANN input and output parameters, control of t he sample quality and construction and training of the neural network. At la st, the case study shows this method is simple and operative.展开更多
With the development of industrial production modernization, FMS and CIMS will become more and more popularized. For its control system is increasingly modeled, intellectualized and automatized, in order to raise the ...With the development of industrial production modernization, FMS and CIMS will become more and more popularized. For its control system is increasingly modeled, intellectualized and automatized, in order to raise the reliability and stability in the manufacturing process, the comprehensive monitoring and diagnosis aimed at cutting tool wear and chatter become more and more important and get rapid development. The paper tried to discuss of the intellectual status identification method based on acoustics-vibra characteristics of machining process, and propose that the working conditions may be taken as a core, complex fuzzy inference neural network model based on artificial neural network theory, and by using various kinds of modernized signal processing method to abstract enough characteristics parameters which will reflect overall processing status from machining acoustics-vibra signal as information source, to identify different working condition, and provide guarantee for automation and intelligence in machining process. The complex network is composed of NNw and NNs, Each of them is composed of BP model network, NNw is weight network at rule condition, NNs is decision-making network of each status. Y out is final inference result which is to take subordinate degree as weight from NNw, to weight reflecting result from NNs and obtain status inference of monitoring system. In the process of machining, the acoustics-vibor signal were gotten by the acoustimeter and the acceleration piezoelectricity detector, the date is analysed by the signal processing software in time and frequency domain, then form multi feature parameter vector of criterion pattern samples for the different stage of cutting chatter and acoustics-vibra multi feature parameter vector. The vector can give a accurate and comprehensive description for the cutting process, and have the characteristic which are speediness of time domain and veracity of frequency domain. The research works have been practically applied in identification of tool wear, cutting chatter, experiment results showed that it is practicable to identify the cutting chatter based on fuzzy neural network, and the new method based on fuzzy neural network can be applied to other state identification in machining process.展开更多
On the basis of Artificial Neural Network theory, a back propagation neural network with one middle layer is building in this paper, and its algorithms is also given, Using this BP network model, study the case of Mal...On the basis of Artificial Neural Network theory, a back propagation neural network with one middle layer is building in this paper, and its algorithms is also given, Using this BP network model, study the case of Malian-River basin. The results by calculating show that the solution based on BP algorithms are consis- tent with those based multiple - variables linear regression model. They also indicate that BP model in this paper is reasonable and BP algorithms are feasible.展开更多
Learning is one of key problems of artificial neural networks. In this paper, we present a kind of combined learning algorithm based on fuzzy entropy criterion for neural networks. The basic idea is to simulate the le...Learning is one of key problems of artificial neural networks. In this paper, we present a kind of combined learning algorithm based on fuzzy entropy criterion for neural networks. The basic idea is to simulate the learning mechanism of human brain and overcome the limitations of monocrifsterion learning. The comparison is made between the given learning algorithm and the typical BP algorithm in order to show the characteristics of the new algorithm.展开更多
This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weat...This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weather research and forecasting (WRF) model.Accurate meteorological data is indispensable for simulating the release of radioactive effluents,especially in dispersion modeling for nuclear emergency decision support systems.Simulation of meteorological conditions during nuclear emergencies using the conventional WRF model is very complex and time-consuming.Therefore,a new artificial neural network (ANN) based technique was proposed as a viable alternative for meteorological prediction.A multi-input multi-output neural network was trained using historical site-specific meteorological data to forecast the meteorological parameters.Comprehensive evaluation of this technique was conducted to test its performance in forecasting various parameters including atmospheric pressure,temperature,and wind speed components in both East-West and North-South directions.The performance of developed network was evaluated on an unknown dataset,and acquired results are within the acceptable range for all meteorological parameters.Results show that ANNs possess the capability to forecast meteorological parameters,such as temperature and pressure,at multiple spatial locations within a grid with high accuracy,utilizing input data from a single station.However,accuracy is slightly compromised when predicting wind speed components.Root mean square error (RMSE) was utilized to report the accuracy of predicted results,with values of 1.453℃for temperature,77 Pa for predicted pressure,1.058 m/s for the wind speed of U-component and 0.959 m/s for the wind speed of V-component.In conclusion,this approach offers a precise,efficient,and wellinformed method for administrative decision-making during nuclear emergencies.展开更多
Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ri...Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ring's position is asymmetrical.All of these cause that the ring's dimensions cannot be measured directly.Through analyzing the relationships among the dimensions of ring blanks,the positions of rolls and the ring's inner and outer diameter,the soft measurement model of ring's dimensions is established based on the radial basis function neural network(RBFNN).A mass of data samples are obtained from VHRR finite element(FE) simulations to train and test the soft measurement NN model,and the model's structure parameters are deduced and optimized by genetic algorithm(GA).Finally,the soft measurement system of ring's dimensions is established and validated by the VHRR experiments.The ring's dimensions were measured artificially and calculated by the soft measurement NN model.The results show that the calculation values of GA-RBFNN model are close to the artificial measurement data.In addition,the calculation accuracy of GA-RBFNN model is higher than that of RBFNN model.The research results suggest that the soft measurement NN model has high precision and flexibility.The research can provide practical methods and theoretical guidance for the accurate measurement of VHRR process.展开更多
An artificial neural network(ANN) constitutive model is developed for high strength armor steel tempered at 500 C, 600 C and 650 C based on high strain rate data generated from split Hopkinson pressure bar(SHPB) exper...An artificial neural network(ANN) constitutive model is developed for high strength armor steel tempered at 500 C, 600 C and 650 C based on high strain rate data generated from split Hopkinson pressure bar(SHPB) experiments. A new neural network configuration consisting of both training and validation is effectively employed to predict flow stress. Tempering temperature, strain rate and strain are considered as inputs, whereas flow stress is taken as output of the neural network. A comparative study on Johnsone Cook(Je C) model and neural network model is performed. It was observed that the developed neural network model could predict flow stress under various strain rates and tempering temperatures. The experimental stressestrain data obtained from high strain rate compression tests using SHPB, over a range of tempering temperatures(500e650 C), strains(0.05e0.2) and strain rates(1000e5500/s) are employed to formulate Je C model to predict the high strain rate deformation behavior of high strength armor steels. The J-C model and the back-propagation ANN model were developed to predict the high strain rate deformation behavior of high strength armor steel and their predictability is evaluated in terms of correlation coefficient(R) and average absolute relative error(AARE). R and AARE for the Je C model are found to be 0.7461 and 27.624%, respectively, while R and AARE for the ANN model are 0.9995 and 2.58%, respectively. It was observed that the predictions by ANN model are in consistence with the experimental data for all tempering temperatures.展开更多
In this paper, a modeling algorithm developed by transferring the adaptive fuzzy inference neural network into an on-line real time algorithm, combining the algorithm with conventional system identification method and...In this paper, a modeling algorithm developed by transferring the adaptive fuzzy inference neural network into an on-line real time algorithm, combining the algorithm with conventional system identification method and applying them to separate identification of nonlinear multi-variable systems is introduced and discussed.展开更多
The problem of global robust asymptotical stability for a class of Takagi-Sugeno fuzzy neural networks(TSFNN) with discontinuous activation functions and time delays is investigated by using Lyapunov stability theor...The problem of global robust asymptotical stability for a class of Takagi-Sugeno fuzzy neural networks(TSFNN) with discontinuous activation functions and time delays is investigated by using Lyapunov stability theory.Based on linear matrix inequalities(LMIs),we originally propose robust fuzzy control to guarantee the global robust asymptotical stability of TSFNNs.Compared with the existing literature,this paper removes the assumptions on the neuron activations such as Lipschitz conditions,bounded,monotonic increasing property or the right-limit value is bigger than the left one at the discontinuous point.Thus,the results are more general and wider.Finally,two numerical examples are given to show the effectiveness of the proposed stability results.展开更多
Background Cotton is one of the most important commercial crops after food crops,especially in countries like India,where it’s grown extensively under rainfed conditions.Because of its usage in multiple industries,su...Background Cotton is one of the most important commercial crops after food crops,especially in countries like India,where it’s grown extensively under rainfed conditions.Because of its usage in multiple industries,such as textile,medicine,and automobile industries,it has greater commercial importance.The crop’s performance is greatly influenced by prevailing weather dynamics.As climate changes,assessing how weather changes affect crop performance is essential.Among various techniques that are available,crop models are the most effective and widely used tools for predicting yields.Results This study compares statistical and machine learning models to assess their ability to predict cotton yield across major producing districts of Karnataka,India,utilizing a long-term dataset spanning from 1990 to 2023 that includes yield and weather factors.The artificial neural networks(ANNs)performed superiorly with acceptable yield deviations ranging within±10%during both vegetative stage(F1)and mid stage(F2)for cotton.The model evaluation metrics such as root mean square error(RMSE),normalized root mean square error(nRMSE),and modelling efficiency(EF)were also within the acceptance limits in most districts.Furthermore,the tested ANN model was used to assess the importance of the dominant weather factors influencing crop yield in each district.Specifically,the use of morning relative humidity as an individual parameter and its interaction with maximum and minimum tempera-ture had a major influence on cotton yield in most of the yield predicted districts.These differences highlighted the differential interactions of weather factors in each district for cotton yield formation,highlighting individual response of each weather factor under different soils and management conditions over the major cotton growing districts of Karnataka.Conclusions Compared with statistical models,machine learning models such as ANNs proved higher efficiency in forecasting the cotton yield due to their ability to consider the interactive effects of weather factors on yield forma-tion at different growth stages.This highlights the best suitability of ANNs for yield forecasting in rainfed conditions and for the study on relative impacts of weather factors on yield.Thus,the study aims to provide valuable insights to support stakeholders in planning effective crop management strategies and formulating relevant policies.展开更多
In this paper,a feature selection method for determining input parameters in antenna modeling is proposed.In antenna modeling,the input feature of artificial neural network(ANN)is geometric parameters.The selection cr...In this paper,a feature selection method for determining input parameters in antenna modeling is proposed.In antenna modeling,the input feature of artificial neural network(ANN)is geometric parameters.The selection criteria contain correlation and sensitivity between the geometric parameter and the electromagnetic(EM)response.Maximal information coefficient(MIC),an exploratory data mining tool,is introduced to evaluate both linear and nonlinear correlations.The EM response range is utilized to evaluate the sensitivity.The wide response range corresponding to varying values of a parameter implies the parameter is highly sensitive and the narrow response range suggests the parameter is insensitive.Only the parameter which is highly correlative and sensitive is selected as the input of ANN,and the sampling space of the model is highly reduced.The modeling of a wideband and circularly polarized antenna is studied as an example to verify the effectiveness of the proposed method.The number of input parameters decreases from8 to 4.The testing errors of|S_(11)|and axis ratio are reduced by8.74%and 8.95%,respectively,compared with the ANN with no feature selection.展开更多
In order to study intelligent fault diagnosis methods based on fuzzy neural network (NN) expert system and build up intelligent fault diagnosis for a type of missile weapon system, the concrete implementation of a fuz...In order to study intelligent fault diagnosis methods based on fuzzy neural network (NN) expert system and build up intelligent fault diagnosis for a type of missile weapon system, the concrete implementation of a fuzzy NN fault diagnosis expert system is given in this paper. Based on thorough research of knowledge presentation, the intelligent fault diagnosis system is implemented with artificial intelligence for a large-scale missile weapon equipment. The method is an effective way to perform fuzzy fault diagnosis. Moreover, it provides a new way of the fault diagnosis for large-scale missile weapon equipment.展开更多
This paper combines image processing with 3D magnetic tracking method to develop a scalpel for haptic simulation in surgical cutting. First, a cutting parameter acquisition setup is presented and the performance is va...This paper combines image processing with 3D magnetic tracking method to develop a scalpel for haptic simulation in surgical cutting. First, a cutting parameter acquisition setup is presented and the performance is validated from soft tissue cutting. Then, based on the acquired input-output data pairs, a method for fuzzy system modeling is presented, that is, after partitioning each input space equally and giving the premises and the total number of fuzzy rules, the consequent parameters and the fuzzy membership functions (MF) of the input variables are learned and optimized via a neurofuzzy modeling technique. Finally, a haptic scalpel implemented with the established cutting model is described. Preliminary results show the feasibility of the haptic display system for real-time interaction.展开更多
In the realm of high-speed railway bridge engineering,managing the intricacies of the track-bridge system model(TBSM)during seismic events remains a formidable challenge.This study pioneers an innovative approach by p...In the realm of high-speed railway bridge engineering,managing the intricacies of the track-bridge system model(TBSM)during seismic events remains a formidable challenge.This study pioneers an innovative approach by presenting a simplified bridge model(SBM)optimized for both computational efficiency and precise representation,a seminal contribution to the engineering design landscape.Central to this innovation is a novel model-updating methodology that synergistically melds artificial neural networks with an augmented particle swarm optimization.The neural networks adeptly map update parameters to seismic responses,while enhancements to the particle swarm algorithm’s inertial and learning weights lead to superior SBM parameter updates.Verification via a 4-span high-speed railway bridge revealed that the optimized SBM and TBSM exhibit a highly consistent structural natural period and seismic response,with errors controlled within 7%.Additionally,the computational efficiency improved by over 100%.Leveraging the peak displacement and shear force residuals from the seismic TBSM and SBM as optimization objectives,SBM parameters are adeptly revised.Furthermore,the incorporation of elastoplastic springs at the beam ends of the simplified model effectively captures the additional mass,stiffness,and constraint effects exerted by the track system on the bridge structure.展开更多
文摘A fuzzy modeling method for complex systems is studied. The notation of general stochastic neural network (GSNN) is presented and a new modeling method is given based on the combination of the modified Takagi and Sugeno's (MTS) fuzzy model and one-order GSNN. Using expectation-maximization(EM) algorithm, parameter estimation and model selection procedures are given. It avoids the shortcomings brought by other methods such as BP algorithm, when the number of parameters is large, BP algorithm is still difficult to apply directly without fine tuning and subjective tinkering. Finally, the simulated example demonstrates the effectiveness.
文摘The effects of cyanidation conditions on gold dissolution were studied by artificial neural network (ANN) modeling. Eighty-five datasets were used to estimate the gold dissolution. Six input parameters, time, solid percentage, P50 of particle, NaCN content in cyanide media, temperature of solution and pH value were used. For selecting the best model, the outputs of models were compared with measured data. A fourth-layer ANN is found to be optimum with architecture of twenty, fifteen, ten and five neurons in the first, second, third and fourth hidden layers, respectively, and one neuron in output layer. The results of artificial neural network show that the square correlation coefficients (R2) of training, testing and validating data achieve 0.999 1, 0.996 4 and 0.9981, respectively. Sensitivity analysis shows that the highest and lowest effects on the gold dissolution rise from time and pH, respectively It is verified that the predicted values of ANN coincide well with the experimental results.
文摘Sonic log is the most versatile reservoir evaluation tool that has been introduced to the industry. Compaction,erosion and over pressurized zone can be evaluated by sonic log.Also primary porosity can be determined from compressional sonic wave transit time and secondary porosity will be calculated by comparing sonic derived porosity log with neutron and density based porosity log.On the other hand all of the rock mechanical properties can be evaluated using simultaneous use of compressional and shear sonic wave transit time.It is essential to have
文摘Now, a rapidly growing concern for the environmental protection and resource utilization has stimulated many new activities in the in dustrialized world for coping with urgent environmental problems created by the steadily increasing consumption of industrial products. Increasingly stringent r egulations and widely expressed public concern for the environment highlight the importance of disposing solid waste generated from industrial and consumable pr oducts. How to efficiently recycle and tackle this problem has been a very impo rtant issue over the world. Designing products for recyclability is driven by environmental and economic goals. To obtain good recyclability, two measures can be adopted. One is better recycling strategy and technology; the other is design for recycling (DFR). The recycling strategies of products generally inclu de: reuse, service, remanufacturing, recycling of production scraps during the p roduct usage, recycle (separation first) and disposal. Recyclability assessment is a very important content in DFR. This paper first discusses the content of D FR and strategies and types related to products recyclability, and points out th at easy or difficult recyclability depends on the design phase. Then method and procedure of recyclability assessment based on ANN is explored in detail. The pr ocess consists of selection of the ANN input and output parameters, control of t he sample quality and construction and training of the neural network. At la st, the case study shows this method is simple and operative.
文摘With the development of industrial production modernization, FMS and CIMS will become more and more popularized. For its control system is increasingly modeled, intellectualized and automatized, in order to raise the reliability and stability in the manufacturing process, the comprehensive monitoring and diagnosis aimed at cutting tool wear and chatter become more and more important and get rapid development. The paper tried to discuss of the intellectual status identification method based on acoustics-vibra characteristics of machining process, and propose that the working conditions may be taken as a core, complex fuzzy inference neural network model based on artificial neural network theory, and by using various kinds of modernized signal processing method to abstract enough characteristics parameters which will reflect overall processing status from machining acoustics-vibra signal as information source, to identify different working condition, and provide guarantee for automation and intelligence in machining process. The complex network is composed of NNw and NNs, Each of them is composed of BP model network, NNw is weight network at rule condition, NNs is decision-making network of each status. Y out is final inference result which is to take subordinate degree as weight from NNw, to weight reflecting result from NNs and obtain status inference of monitoring system. In the process of machining, the acoustics-vibor signal were gotten by the acoustimeter and the acceleration piezoelectricity detector, the date is analysed by the signal processing software in time and frequency domain, then form multi feature parameter vector of criterion pattern samples for the different stage of cutting chatter and acoustics-vibra multi feature parameter vector. The vector can give a accurate and comprehensive description for the cutting process, and have the characteristic which are speediness of time domain and veracity of frequency domain. The research works have been practically applied in identification of tool wear, cutting chatter, experiment results showed that it is practicable to identify the cutting chatter based on fuzzy neural network, and the new method based on fuzzy neural network can be applied to other state identification in machining process.
基金Supported by Brilliant Youth Fund in Hebei Province
文摘On the basis of Artificial Neural Network theory, a back propagation neural network with one middle layer is building in this paper, and its algorithms is also given, Using this BP network model, study the case of Malian-River basin. The results by calculating show that the solution based on BP algorithms are consis- tent with those based multiple - variables linear regression model. They also indicate that BP model in this paper is reasonable and BP algorithms are feasible.
文摘Learning is one of key problems of artificial neural networks. In this paper, we present a kind of combined learning algorithm based on fuzzy entropy criterion for neural networks. The basic idea is to simulate the learning mechanism of human brain and overcome the limitations of monocrifsterion learning. The comparison is made between the given learning algorithm and the typical BP algorithm in order to show the characteristics of the new algorithm.
文摘This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weather research and forecasting (WRF) model.Accurate meteorological data is indispensable for simulating the release of radioactive effluents,especially in dispersion modeling for nuclear emergency decision support systems.Simulation of meteorological conditions during nuclear emergencies using the conventional WRF model is very complex and time-consuming.Therefore,a new artificial neural network (ANN) based technique was proposed as a viable alternative for meteorological prediction.A multi-input multi-output neural network was trained using historical site-specific meteorological data to forecast the meteorological parameters.Comprehensive evaluation of this technique was conducted to test its performance in forecasting various parameters including atmospheric pressure,temperature,and wind speed components in both East-West and North-South directions.The performance of developed network was evaluated on an unknown dataset,and acquired results are within the acceptable range for all meteorological parameters.Results show that ANNs possess the capability to forecast meteorological parameters,such as temperature and pressure,at multiple spatial locations within a grid with high accuracy,utilizing input data from a single station.However,accuracy is slightly compromised when predicting wind speed components.Root mean square error (RMSE) was utilized to report the accuracy of predicted results,with values of 1.453℃for temperature,77 Pa for predicted pressure,1.058 m/s for the wind speed of U-component and 0.959 m/s for the wind speed of V-component.In conclusion,this approach offers a precise,efficient,and wellinformed method for administrative decision-making during nuclear emergencies.
基金Project(51205299)supported by the National Natural Science Foundation of ChinaProject(2015M582643)supported by the China Postdoctoral Science Foundation+2 种基金Project(2014BAA008)supported by the Science and Technology Support Program of Hubei Province,ChinaProject(2014-IV-144)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(2012AAA07-01)supported by the Major Science and Technology Achievements Transformation&Industrialization Program of Hubei Province,China
文摘Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ring's position is asymmetrical.All of these cause that the ring's dimensions cannot be measured directly.Through analyzing the relationships among the dimensions of ring blanks,the positions of rolls and the ring's inner and outer diameter,the soft measurement model of ring's dimensions is established based on the radial basis function neural network(RBFNN).A mass of data samples are obtained from VHRR finite element(FE) simulations to train and test the soft measurement NN model,and the model's structure parameters are deduced and optimized by genetic algorithm(GA).Finally,the soft measurement system of ring's dimensions is established and validated by the VHRR experiments.The ring's dimensions were measured artificially and calculated by the soft measurement NN model.The results show that the calculation values of GA-RBFNN model are close to the artificial measurement data.In addition,the calculation accuracy of GA-RBFNN model is higher than that of RBFNN model.The research results suggest that the soft measurement NN model has high precision and flexibility.The research can provide practical methods and theoretical guidance for the accurate measurement of VHRR process.
文摘An artificial neural network(ANN) constitutive model is developed for high strength armor steel tempered at 500 C, 600 C and 650 C based on high strain rate data generated from split Hopkinson pressure bar(SHPB) experiments. A new neural network configuration consisting of both training and validation is effectively employed to predict flow stress. Tempering temperature, strain rate and strain are considered as inputs, whereas flow stress is taken as output of the neural network. A comparative study on Johnsone Cook(Je C) model and neural network model is performed. It was observed that the developed neural network model could predict flow stress under various strain rates and tempering temperatures. The experimental stressestrain data obtained from high strain rate compression tests using SHPB, over a range of tempering temperatures(500e650 C), strains(0.05e0.2) and strain rates(1000e5500/s) are employed to formulate Je C model to predict the high strain rate deformation behavior of high strength armor steels. The J-C model and the back-propagation ANN model were developed to predict the high strain rate deformation behavior of high strength armor steel and their predictability is evaluated in terms of correlation coefficient(R) and average absolute relative error(AARE). R and AARE for the Je C model are found to be 0.7461 and 27.624%, respectively, while R and AARE for the ANN model are 0.9995 and 2.58%, respectively. It was observed that the predictions by ANN model are in consistence with the experimental data for all tempering temperatures.
文摘In this paper, a modeling algorithm developed by transferring the adaptive fuzzy inference neural network into an on-line real time algorithm, combining the algorithm with conventional system identification method and applying them to separate identification of nonlinear multi-variable systems is introduced and discussed.
基金supported by the National Natural Science Foundation of China(6077504760835004)+2 种基金the National High Technology Research and Development Program of China(863 Program)(2007AA04Z244 2008AA04Z214)the Graduate Innovation Fundation of Hunan Province(CX2010B132)
文摘The problem of global robust asymptotical stability for a class of Takagi-Sugeno fuzzy neural networks(TSFNN) with discontinuous activation functions and time delays is investigated by using Lyapunov stability theory.Based on linear matrix inequalities(LMIs),we originally propose robust fuzzy control to guarantee the global robust asymptotical stability of TSFNNs.Compared with the existing literature,this paper removes the assumptions on the neuron activations such as Lipschitz conditions,bounded,monotonic increasing property or the right-limit value is bigger than the left one at the discontinuous point.Thus,the results are more general and wider.Finally,two numerical examples are given to show the effectiveness of the proposed stability results.
基金funded through India Meteorological Department,New Delhi,India under the Forecasting Agricultural output using Space,Agrometeorol ogy and Land based observations(FASAL)project and fund number:No.ASC/FASAL/KT-11/01/HQ-2010.
文摘Background Cotton is one of the most important commercial crops after food crops,especially in countries like India,where it’s grown extensively under rainfed conditions.Because of its usage in multiple industries,such as textile,medicine,and automobile industries,it has greater commercial importance.The crop’s performance is greatly influenced by prevailing weather dynamics.As climate changes,assessing how weather changes affect crop performance is essential.Among various techniques that are available,crop models are the most effective and widely used tools for predicting yields.Results This study compares statistical and machine learning models to assess their ability to predict cotton yield across major producing districts of Karnataka,India,utilizing a long-term dataset spanning from 1990 to 2023 that includes yield and weather factors.The artificial neural networks(ANNs)performed superiorly with acceptable yield deviations ranging within±10%during both vegetative stage(F1)and mid stage(F2)for cotton.The model evaluation metrics such as root mean square error(RMSE),normalized root mean square error(nRMSE),and modelling efficiency(EF)were also within the acceptance limits in most districts.Furthermore,the tested ANN model was used to assess the importance of the dominant weather factors influencing crop yield in each district.Specifically,the use of morning relative humidity as an individual parameter and its interaction with maximum and minimum tempera-ture had a major influence on cotton yield in most of the yield predicted districts.These differences highlighted the differential interactions of weather factors in each district for cotton yield formation,highlighting individual response of each weather factor under different soils and management conditions over the major cotton growing districts of Karnataka.Conclusions Compared with statistical models,machine learning models such as ANNs proved higher efficiency in forecasting the cotton yield due to their ability to consider the interactive effects of weather factors on yield forma-tion at different growth stages.This highlights the best suitability of ANNs for yield forecasting in rainfed conditions and for the study on relative impacts of weather factors on yield.Thus,the study aims to provide valuable insights to support stakeholders in planning effective crop management strategies and formulating relevant policies.
基金National Natural Science Foundation of China(62161048)Sichuan Science and Technology Program(2022NSFSC0547,2022ZYD0109)。
文摘In this paper,a feature selection method for determining input parameters in antenna modeling is proposed.In antenna modeling,the input feature of artificial neural network(ANN)is geometric parameters.The selection criteria contain correlation and sensitivity between the geometric parameter and the electromagnetic(EM)response.Maximal information coefficient(MIC),an exploratory data mining tool,is introduced to evaluate both linear and nonlinear correlations.The EM response range is utilized to evaluate the sensitivity.The wide response range corresponding to varying values of a parameter implies the parameter is highly sensitive and the narrow response range suggests the parameter is insensitive.Only the parameter which is highly correlative and sensitive is selected as the input of ANN,and the sampling space of the model is highly reduced.The modeling of a wideband and circularly polarized antenna is studied as an example to verify the effectiveness of the proposed method.The number of input parameters decreases from8 to 4.The testing errors of|S_(11)|and axis ratio are reduced by8.74%and 8.95%,respectively,compared with the ANN with no feature selection.
文摘In order to study intelligent fault diagnosis methods based on fuzzy neural network (NN) expert system and build up intelligent fault diagnosis for a type of missile weapon system, the concrete implementation of a fuzzy NN fault diagnosis expert system is given in this paper. Based on thorough research of knowledge presentation, the intelligent fault diagnosis system is implemented with artificial intelligence for a large-scale missile weapon equipment. The method is an effective way to perform fuzzy fault diagnosis. Moreover, it provides a new way of the fault diagnosis for large-scale missile weapon equipment.
基金Supported by National Natural Science Foundation of P. R. China (60273028)
文摘This paper combines image processing with 3D magnetic tracking method to develop a scalpel for haptic simulation in surgical cutting. First, a cutting parameter acquisition setup is presented and the performance is validated from soft tissue cutting. Then, based on the acquired input-output data pairs, a method for fuzzy system modeling is presented, that is, after partitioning each input space equally and giving the premises and the total number of fuzzy rules, the consequent parameters and the fuzzy membership functions (MF) of the input variables are learned and optimized via a neurofuzzy modeling technique. Finally, a haptic scalpel implemented with the established cutting model is described. Preliminary results show the feasibility of the haptic display system for real-time interaction.
基金Project(2022YFC3004304)supported by the National Key Research and Development Program of ChinaProjects(52078487,U1934207,52178180)supported by the National Natural Science Foundation of China+2 种基金Project(2022TJ-Y10)supported by the Hunan Province Science and Technology Talent Lifting Project,ChinaProject(2023QYJC006)supported by the Frontier Cross Research Project of Central South University,ChinaProject(SKL-IoTSC(UM)-2024-2026/ORP/GA08/2023)supported by the Science and Technology Development Fund and the State Key Laboratory of Internet of Things for Smart City(University of Macao),China。
文摘In the realm of high-speed railway bridge engineering,managing the intricacies of the track-bridge system model(TBSM)during seismic events remains a formidable challenge.This study pioneers an innovative approach by presenting a simplified bridge model(SBM)optimized for both computational efficiency and precise representation,a seminal contribution to the engineering design landscape.Central to this innovation is a novel model-updating methodology that synergistically melds artificial neural networks with an augmented particle swarm optimization.The neural networks adeptly map update parameters to seismic responses,while enhancements to the particle swarm algorithm’s inertial and learning weights lead to superior SBM parameter updates.Verification via a 4-span high-speed railway bridge revealed that the optimized SBM and TBSM exhibit a highly consistent structural natural period and seismic response,with errors controlled within 7%.Additionally,the computational efficiency improved by over 100%.Leveraging the peak displacement and shear force residuals from the seismic TBSM and SBM as optimization objectives,SBM parameters are adeptly revised.Furthermore,the incorporation of elastoplastic springs at the beam ends of the simplified model effectively captures the additional mass,stiffness,and constraint effects exerted by the track system on the bridge structure.