Michael K.Ng等人提出了新K-Modes聚类算法,它采用基于相对频率的启发式相异度度量方法,有效地提高了聚类精度,但不足的是在计算各类的属性分类值频率时假定类中样本对聚类的贡献相同。为了考虑类中样本对类中心的不同影响,提出一种粗糙...Michael K.Ng等人提出了新K-Modes聚类算法,它采用基于相对频率的启发式相异度度量方法,有效地提高了聚类精度,但不足的是在计算各类的属性分类值频率时假定类中样本对聚类的贡献相同。为了考虑类中样本对类中心的不同影响,提出一种粗糙K-Modes算法,通过粗糙集的上、下近似度量数据样本在类内的重要性程度,不仅可以获得比新K-Modes算法更好的聚类效果,而且可以在保证聚类效果的基础上降低白亮等人提出的基于粗糙集改进的K-Modes算法的计算复杂度。对几个UCI的数据集的测试实验结果显示出新算法的优良性能。展开更多
A multi-objective optimization model for draft scheduling of hot strip mill was presented, rolling power minimizing, rolling force ratio distribution and good strip shape as the objective functions. A multi-objective ...A multi-objective optimization model for draft scheduling of hot strip mill was presented, rolling power minimizing, rolling force ratio distribution and good strip shape as the objective functions. A multi-objective differential evolution algorithm based on decomposition (MODE/D). The two-objective and three-objective optimization experiments were performed respectively to demonstrate the optimal solutions of trade-off. The simulation results show that MODE/D can obtain a good Pareto-optimal front, which suggests a series of alternative solutions to draft scheduling. The extreme Pareto solutions are found feasible and the centres of the Pareto fronts give a good compromise. The conflict exists between each two ones of three objectives. The final optimal solution is selected from the Pareto-optimal front by the importance of objectives, and it can achieve a better performance in all objective dimensions than the empirical solutions. Finally, the practical application cases confirm the feasibility of the multi-objective approach, and the optimal solutions can gain a better rolling stability than the empirical solutions, and strip flatness decreases from (0± 63) IU to (0±45) IU in industrial production.展开更多
基金Projects(50974039,50634030)supported by the National Natural Science Foundation of China
文摘A multi-objective optimization model for draft scheduling of hot strip mill was presented, rolling power minimizing, rolling force ratio distribution and good strip shape as the objective functions. A multi-objective differential evolution algorithm based on decomposition (MODE/D). The two-objective and three-objective optimization experiments were performed respectively to demonstrate the optimal solutions of trade-off. The simulation results show that MODE/D can obtain a good Pareto-optimal front, which suggests a series of alternative solutions to draft scheduling. The extreme Pareto solutions are found feasible and the centres of the Pareto fronts give a good compromise. The conflict exists between each two ones of three objectives. The final optimal solution is selected from the Pareto-optimal front by the importance of objectives, and it can achieve a better performance in all objective dimensions than the empirical solutions. Finally, the practical application cases confirm the feasibility of the multi-objective approach, and the optimal solutions can gain a better rolling stability than the empirical solutions, and strip flatness decreases from (0± 63) IU to (0±45) IU in industrial production.