期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
基于改进轻量级深度卷积神经网络的果树叶片分类及病害识别模型设计 被引量:3
1
作者 买买提·沙吾提 李荣鹏 +2 位作者 蔡和兵 赵明 梁嘉曦 《森林工程》 北大核心 2025年第2期277-287,共11页
新疆是中国重要的林果产业基地,特色林果业是区域经济发展的重要组成部分。为预防果树病害制约林果业发展,设计一款归一化注意力(normalization-based attention module,NAM)轻量级深度卷积神经网络(MobileNet-V2)果树叶片分类及病害识... 新疆是中国重要的林果产业基地,特色林果业是区域经济发展的重要组成部分。为预防果树病害制约林果业发展,设计一款归一化注意力(normalization-based attention module,NAM)轻量级深度卷积神经网络(MobileNet-V2)果树叶片分类及病害识别模型。其中融入轻量型的归一化注意力机制,提高模型对特征信息的敏感度,使模型关注显著性特征。同时,将L1正则化(L1 regularization或losso)添加到损失函数中,对权重进行稀疏性惩罚,抑制非显著性权重。试验结果表明,在叶片分类中,模型对自构建植物叶片病害识别数据集(Plant Village)、混合数据集的分类结果均表现良好,准确率分别达到97.05%、98.73%、94.91%,具有较好的泛化能力。在病害识别中,MobileNet-V2 NAM模型实现94.55%的识别准确率,高于深度卷积神经网络(AlexNet)、视觉几何群网络(VGG16)经典卷积神经网络(Convolutional Neural Networks,CNN)模型,且模型参数量只有3.56 M。MobileNet-V2 NAM在具有良好准确率同时保持了较低的模型参数量,为深度学习模型嵌入到移动设备提供技术支持。 展开更多
关键词 新疆 果树分类 病害识别 归一化注意力轻量级深度卷积神经网络(MobileNet-V2 NAM) 归一化注意力机制
在线阅读 下载PDF
基于轻量级神经网络的小尾寒羊面部识别 被引量:1
2
作者 孙权 宣传忠 +4 位作者 张梦宇 张曦文 赵明辉 宋硕 郝敏 《山东农业大学学报(自然科学版)》 北大核心 2024年第2期254-261,共8页
为实现羊只面部身份快速识别,本文以自建数据集为研究对象,提出了一种基于SSD的轻量化检测算法。首先该算法将SSD的主干网络VGG16替换成轻量级神经网络MobileNetv2,构建了一种轻量化混合神经网络模型。其次在特征提取网络参数量为1122&#... 为实现羊只面部身份快速识别,本文以自建数据集为研究对象,提出了一种基于SSD的轻量化检测算法。首先该算法将SSD的主干网络VGG16替换成轻量级神经网络MobileNetv2,构建了一种轻量化混合神经网络模型。其次在特征提取网络参数量为1122×32的bottleneck层前端和72×160的bottleneck层后端分别引入CA、SE、CBAM和ECA注意力机制,实验结果表明72×160的bottleneck层后端引入ECA注意力机制是最优的。最后将smoothL1损失函数替换成BalancedL1损失函数。最优模型(SSD-v2-ECA2-B)模型大小从SSD的132MB减小到56.4MB,平均精度均值为81.16%,平均帧率为64.21帧/s,相较于基础的SSD模型平均精度均值提升了0.94个百分点,模型体积减小了75.6MB,检测速度提高了5.23帧/s。利用相同数据集在不同目标检测模型上进行对比试验,与SSD模型、Faster R-CNN模型、Retinanet模型相比,平均精度均值分别提升了0.36、2.40和0.07个百分点,与改进前的模型相比具有更好的综合性能。改进模型在大幅减少模型大小及其计算量的同时使模型性能保持在一个较高的水平,为畜牧养殖数字化和智能化提供方法参考,具有较高的应用价值。 展开更多
关键词 羊脸识别 SSD目标检测算法 mobilenetv2轻量级神经网络
在线阅读 下载PDF
基于MobileNetv2神经网络的无人机信号调制识别方法 被引量:3
3
作者 杨雷 郭恩泽 +3 位作者 刘益岑 魏国峰 杨宁 郭道省 《兵器装备工程学报》 CAS CSCD 北大核心 2023年第3期210-218,共9页
针对无人机的图传信号,现有调制识别方法存在低信噪比条件下识别率低以及传统的深度网络模型存储开销大、计算复杂,难以应用于存储空间受限的6G智能边缘设备等问题,提出基于时频分析和MobileNetv2轻量级神经网络模型的无人机图传信号调... 针对无人机的图传信号,现有调制识别方法存在低信噪比条件下识别率低以及传统的深度网络模型存储开销大、计算复杂,难以应用于存储空间受限的6G智能边缘设备等问题,提出基于时频分析和MobileNetv2轻量级神经网络模型的无人机图传信号调制识别方法。通过短时傅里叶变换(short time fourier transform, STFT)把一维时域信号转为二维时频图像,并且利用能量门限降噪方法对获得的时频图像特征进行降噪和归一化处理,最后使用MobileNetv2轻量级神经网络对信号特征进行识别。实验选用了6种常见的单载波数字通信信号和1种多载波OFDM调制方式的信号,并在AWGN加性高斯白噪声信道环境中进行。实验结果表明,所提方法相较于未降噪的图像特征,在SNR=-12 dB时识别率提升了约6%,在SNR=-12~0 dB的高斯白噪声环境下,对7种不同调制方式的无人机图传信号获得了93.33%的识别率,并且完成一次识别需要进行大约313 M次的计算量,模型参数量大约为3.5 M,模型规模大约为13 M。相比于其他调制识别方法,所提方法不仅识别准确率较高、稳定性好,而且显著降低了网络模型存储和计算量的开销,便于应用于移动设备和存储资源受限的嵌入式设备。 展开更多
关键词 无人机信号 调制识别 mobilenetv2轻量级神经网络 短时傅里叶变换 能量门限降噪
在线阅读 下载PDF
基于轻量级卷积神经网络和迁移学习的小麦叶部病害图像识别 被引量:40
4
作者 冯晓 李丹丹 +7 位作者 王文君 郑国清 刘海礁 孙永胜 梁山 杨莹 臧贺藏 张辉 《河南农业科学》 北大核心 2021年第4期174-180,共7页
为实现基于移动端的小麦叶部病害图像便捷识别,基于轻量级卷积神经网络(Convolutional neural network,CNN)和迁移学习建立小麦叶部病害图像识别模型。首先,建立由小麦白粉病、条锈病和叶锈病3种小麦叶部病害图像组成的样本集,每幅图像... 为实现基于移动端的小麦叶部病害图像便捷识别,基于轻量级卷积神经网络(Convolutional neural network,CNN)和迁移学习建立小麦叶部病害图像识别模型。首先,建立由小麦白粉病、条锈病和叶锈病3种小麦叶部病害图像组成的样本集,每幅图像大小为224像素×224像素;然后,采用深度学习框架Tensorflow 2.0,基于MobileNetV2构建小麦叶部病害图像识别模型,使用ImageNet数据集上训练好的参数作为模型初始参数;最后,分析迁移学习方法、样本量、全局平均池化(Global average pooling,GAP)前添加Dropout层、初始学习率大小对模型性能的影响。结果表明,采用将模型所有层设置为可训练的迁移学习方式、选择适合的数据增强方法增加样本量、在GAP前添加Dropout层、设置0.00001的初始学习率,对3种小麦病害图像的平均识别准确率高达99.96%。可见,基于MobileNetV2和迁移学习可构建识别准确率高、泛化能力强、适合移动端应用的小麦叶部病害图像识别模型。 展开更多
关键词 小麦 叶部病害 卷积神经网络 迁移学习 图像识别 mobilenetv2 计算机视觉
在线阅读 下载PDF
融合孪生神经网络与互注意力的建筑物变化检测
5
作者 刘晨晨 葛小三 武永斌 《遥感信息》 CSCD 北大核心 2024年第5期70-77,共8页
针对在双时相影像中提取建筑物变化区域时易出现漏检错检现象等问题,提出了一种基于孪生神经网络和多头注意力机制的遥感影像建筑物变化检测模型。该模型采用改进的轻量级网络MobileNetv2作为特征提取网络,设计了一种编解码结构的互注... 针对在双时相影像中提取建筑物变化区域时易出现漏检错检现象等问题,提出了一种基于孪生神经网络和多头注意力机制的遥感影像建筑物变化检测模型。该模型采用改进的轻量级网络MobileNetv2作为特征提取网络,设计了一种编解码结构的互注意力网络用于双时相遥感影像特征的交互融合,引入多头注意力机制实现了全局信息的上下文建模,对高级语义特征进行细化分析,充分利用了遥感影像的多尺度信息。该方法在LEVIR-CD和WHU数据集上的变化检测结果均优于其他主流分割网络,能够有效改善大型建筑物的内部空洞和漏检错检现象。 展开更多
关键词 建筑物变化检测 孪生神经网络 多头注意力机制 mobilenetv2 深度学习
在线阅读 下载PDF
融合Focal Loss与典型卷积神经网络结构的水稻病害图像分类 被引量:6
6
作者 杨非凡 徐伟诚 +1 位作者 陈盛德 兰玉彬 《江苏农业科学》 北大核心 2023年第14期198-204,共7页
快速高效地识别水稻病害的种类并及时采取有效的防治措施对避免水稻减产具有重要意义,为解决人工识别水稻病害效率低、识别精度不高、深度学习样本不平衡导致识别准确率不高等问题,融合Focal Loss与4种典型卷积神经网络结构对7种水稻病... 快速高效地识别水稻病害的种类并及时采取有效的防治措施对避免水稻减产具有重要意义,为解决人工识别水稻病害效率低、识别精度不高、深度学习样本不平衡导致识别准确率不高等问题,融合Focal Loss与4种典型卷积神经网络结构对7种水稻病害进行分类识别。利用TensorFlow的Keras深度学习框架搭建卷积神经网络的图像识别分类系统,使用Focal Loss损失函数解决数据集不平衡导致识别准确率低的问题,采用ResNet50、ResNet101、MobileNetV2、VGG16作为特征提取骨干,对7种水稻病害进行识别。通过imgaug库增强数据,将13543张水稻病害图像按照9∶1的比例划分为训练集和验证集并参与训练模型,将1404张水稻病害图像作为测试集来验证模型的准确性。结果表明,所搭建的数据集中ResNet50、ResNet101、MobileNetV2、VGG16的识别准确率分别为98.06%、94.26%、92.47%、97.83%。可见,在融合Focal Loss损失函数的情况下,ResNet50作为特征提取骨干训练出的模型在水稻病害图像分类中拥有最高的准确率,该成果可在实际生产中实现水稻病害的自动分类识别,有助于水稻病害的防治工作。 展开更多
关键词 水稻病害识别 卷积神经网络 Focal Loss ResNet mobilenetv2 VGG16
在线阅读 下载PDF
基于MobileNetV2的岩石薄片岩性识别 被引量:4
7
作者 王婷婷 黄志贤 +2 位作者 王洪涛 杨明昊 赵万春 《吉林大学学报(地球科学版)》 CAS CSCD 北大核心 2024年第4期1432-1442,共11页
岩石薄片的岩性识别是地质分析中不可或缺的一环,其精准度直接影响后续地层岩石种类、性质和矿物成分等信息的确定,对于地质勘探和矿产开采具有重要意义。为了快速准确地识别岩性,本文提出了一种改进的MobileNetV2轻量化模型,通过选取5... 岩石薄片的岩性识别是地质分析中不可或缺的一环,其精准度直接影响后续地层岩石种类、性质和矿物成分等信息的确定,对于地质勘探和矿产开采具有重要意义。为了快速准确地识别岩性,本文提出了一种改进的MobileNetV2轻量化模型,通过选取5种岩石类型共3 700张岩石薄片图像进行岩性识别。在MobileNetV2的倒残差结构中嵌入坐标注意力机制,融合图像中多种矿物的全局特征信息。此外,改进MobileNetV2中的分类器,降低模型的参数量和计算复杂度,从而提高模型的运算速度和效率,并采用带泄露线性整流函数(leaky rectified linear unit, Leaky ReLU)作为激活函数,避免网络训练中的梯度消失问题。实验结果表明,本文提出的改进后的MobileNetV2模型大小仅为2.30 MB,在测试集上的精确率、召回率、F_(1)值分别为91.24%、90.18%、90.70%,具有较高的准确性,相比于SqueezeNet、ShuffleNetV2等同类型的轻量化网络,分类效果最好。 展开更多
关键词 岩石薄片图像 轻量化神经网络 mobilenetv2 坐标注意力机制 岩性识别
在线阅读 下载PDF
基于CA-MobileNetV2的心肌梗死定位算法研究 被引量:1
8
作者 张鹏飞 叶哲江 《传感技术学报》 CAS CSCD 北大核心 2024年第7期1179-1185,共7页
为实现临床医疗设备快速辅助诊断心肌梗死(MI)发生的部位。在轻量化卷积神经网络MobileNetV2的基础上结合协调注意力(CA)机制设计出了一种高准确率的MI部位定位算法。从PTB数据集中筛选正常和MI病例的12导联心电图(ECG)样本,将ECG信号... 为实现临床医疗设备快速辅助诊断心肌梗死(MI)发生的部位。在轻量化卷积神经网络MobileNetV2的基础上结合协调注意力(CA)机制设计出了一种高准确率的MI部位定位算法。从PTB数据集中筛选正常和MI病例的12导联心电图(ECG)样本,将ECG信号进行去噪处理。使用差分阈值法检测出ECG信号的R峰,根据R峰分割出心拍样本,使用心拍数据对所设计模型进行训练和测试。使用准确率、精度、灵敏度、特异性和混淆矩阵对模型的分类性能进行了评估。将训练集迭代60轮后,测试集的准确率达到了99.91%。结果表明,融合CA模块的MobileNetV2模型对于MI部位的定位具有很好的效果,有助于医疗设备实现MI的快速辅助诊断。 展开更多
关键词 轻量化卷积神经网络 心肌梗死定位 mobilenetv2 注意力机制 心电图
在线阅读 下载PDF
基于轻量级残差网络的无人机个体识别方法 被引量:6
9
作者 杨雷 郭恩泽 +3 位作者 刘益岑 魏国峰 杨宁 郭道省 《兵器装备工程学报》 CAS CSCD 北大核心 2023年第6期246-253,共8页
在无人机的个体识别中,针对现有的识别方法存在分类准确率低、实时性差、网络模型参数量大以及难以应用于资源受限的设备等问题,提出基于轻量级残差网络(scale down resnet,SDRNet)的无人机个体识别方法。首先,通过短时傅里叶变换(short... 在无人机的个体识别中,针对现有的识别方法存在分类准确率低、实时性差、网络模型参数量大以及难以应用于资源受限的设备等问题,提出基于轻量级残差网络(scale down resnet,SDRNet)的无人机个体识别方法。首先,通过短时傅里叶变换(short time fourier transform,STFT)把一维时域信号转为二维时频图像,并对图像进行灰度处理。其次,网络基于MobileNetv2,结合无人机个体信号的时频图像特征,通过缩减网络层数以降低模型深度,通过减少输出通道数以降低模型维度;借鉴ResNet残差结构的设计思想,通过增加卷积层的残差连接以实现更多不同深度网络的集成,设计出轻量级残差网络SDRNet模型。最后,利用STFT时频灰度图作为样本对SDRNet模型进行训练,实现对无人机个体的识别。仿真实验采用公开的6架悬停无人机的信号、在AWGN高斯白噪声信道环境下进行。实验结果表明,所提方法在信噪比SNR=10 dB的环境下对无人机个体信号的平均识别率为94.00%,分别高于MobileNetv2、GoogleNet模型的0.17%、5.17%,低于ResNet模型2.50%;所设计的SDRNet模型的可学习参数量、模型规模、乘加计算量约为基础轻量级MobileNetv2模型的19.5%、19.6%、35.9%。相较于基于MobileNetv2、GoogleNet、ResNet等神经网络模型方法相比,所提方法在保持较高识别准确率的同时,具有更快的识别速度和更小的内存开销。 展开更多
关键词 无人机信号 个体识别 轻量级神经网络 mobilenetv2 残差网络
在线阅读 下载PDF
改进MobileNetV2网络在遥感影像场景分类中的应用 被引量:7
10
作者 杨国亮 李放 +1 位作者 朱晨 许楠 《遥感信息》 CSCD 北大核心 2020年第1期1-8,共8页
针对使用深层卷积神经网络进行场景分类往往需要消耗大量的时间与存储空间来训练、测试并保存模型的问题,将DenseNet的密集连接的思想应用于轻量化网络MobileNetv2中,借助特征复用来提高网络性能。同时利用一个扩张系数为1、步长为1的... 针对使用深层卷积神经网络进行场景分类往往需要消耗大量的时间与存储空间来训练、测试并保存模型的问题,将DenseNet的密集连接的思想应用于轻量化网络MobileNetv2中,借助特征复用来提高网络性能。同时利用一个扩张系数为1、步长为1的瓶颈与一个扩张系数为1、步长为2的瓶颈的组合压缩特征图的通道数,并将部分瓶颈的扩张系数减小以控制网络的整体规模。将改进的网络在NWPU-RESISC45遥感影像数据集上进行实验分析。结果表明,改进网络在保持分类准确率的同时缩减了网络规模,提高了计算速度,对遥感影像场景分类具有较好的实用性。 展开更多
关键词 卷积神经网络 mobilenetv2 场景分类 DenseNet 深度学习
在线阅读 下载PDF
基于轻量级深度网络的计算机病毒检测方法 被引量:7
11
作者 吴恋 赵晨洁 +2 位作者 韦萍萍 于国龙 徐勇 《计算机工程与设计》 北大核心 2022年第3期632-638,共7页
为解决已有病毒检测机制无法很好地处理大量未知病毒及深度网络模型难以部署在嵌入式设备上应用的问题,提出一种基于轻量级深度网络的计算机病毒检测方法。采用B2M算法将病毒映射为灰度图像,提取灰度共生矩阵GLCM作为轻量级深度网络Sque... 为解决已有病毒检测机制无法很好地处理大量未知病毒及深度网络模型难以部署在嵌入式设备上应用的问题,提出一种基于轻量级深度网络的计算机病毒检测方法。采用B2M算法将病毒映射为灰度图像,提取灰度共生矩阵GLCM作为轻量级深度网络SqueezeNet的输入,将传统视觉特征与深度神经网络进行整合,实现病毒的高准确率判别。对SqueezeNet进行卷积结构和特征增强的改进,使之运行速度更快、资源消耗更低,检测精度更高。实验验证了该方法的有效性。 展开更多
关键词 深度学习 轻量级 SqueezeNet模型 病毒检测 卷积神经网络 B2M算法
在线阅读 下载PDF
基于MobileNetV2和迁移学习的玉米病害识别研究 被引量:20
12
作者 刘合兵 鲁笛 席磊 《河南农业大学学报》 CAS CSCD 2022年第6期1041-1051,共11页
【目的】解决玉米叶部病害识别效率低、精度低的问题,探究新的玉米病害识别方法。【方法】将卷积神经网络MobileNetV2和迁移学习相结合,分别采用迁移学习中特征提取、全部迁移和微调3种训练方式获得3种模型,并与全新训练的MobileNetV2... 【目的】解决玉米叶部病害识别效率低、精度低的问题,探究新的玉米病害识别方法。【方法】将卷积神经网络MobileNetV2和迁移学习相结合,分别采用迁移学习中特征提取、全部迁移和微调3种训练方式获得3种模型,并与全新训练的MobileNetV2模型进行对比。【结果】微调模型经历较少的epoch便可取得较好的识别效果,模型准确率达99.25%,比全新训练的MobileNetV2模型提高了3.09%。在上述研究基础上,设计并实现了基于移动端的玉米病害识别系统,玉米叶部病害的平均识别准确率为84%,用时仅为1.16 s。【结论】本研究提出的玉米病害识别方法能更好应用于日常检测玉米病害,为相关病害防治提供参考。 展开更多
关键词 玉米病害 卷积神经网络 迁移学习 mobilenetv2 识别系统
在线阅读 下载PDF
基于改进MobileNetV2的人脸表情识别 被引量:11
13
作者 严春满 张翔 王青朋 《计算机工程与科学》 CSCD 北大核心 2023年第6期1071-1078,共8页
针对现有深度卷积神经网络参数量庞大,导致人脸表情识别场景受限的问题,提出一种基于改进轻量级卷积神经网络的人脸表情识别模型。该模型以MobileNetV2轻量级特征提取网络为主要框架,通过压缩网络宽度因子与整体维度,减少网络参数量与... 针对现有深度卷积神经网络参数量庞大,导致人脸表情识别场景受限的问题,提出一种基于改进轻量级卷积神经网络的人脸表情识别模型。该模型以MobileNetV2轻量级特征提取网络为主要框架,通过压缩网络宽度因子与整体维度,减少网络参数量与计算量;引入SandGlass模块对网络倒残差模块进行改进,减少特征信息在网络传输中的丢失;同时嵌入高效通道注意力机制,提高网络对于特征信息的提取能力。在人脸表情数据集FER2013和CK+上进行实验,所提网络模型的人脸表情识别准确率达到了68.96%与95.96%,分别高于MobileNetV21.06%与6.14%,且参数量下降82.28%,实验结果验证了网络模型改进措施的有效性。 展开更多
关键词 人脸表情识别 轻量级网络 mobilenetv2 倒残差模块 通道注意力
在线阅读 下载PDF
面向自动驾驶的轻量级道路场景语义分割 被引量:1
14
作者 李顺新 吴桐 《计算机工程与应用》 CSCD 北大核心 2023年第19期177-183,共7页
自动驾驶领域中,现有的道路场景语义分割算法开销巨大,无法满足自动驾驶的实时性。基于DeepLabV3+的整体结构,提出了一种并行特征处理的轻量级图像语义分割模型,兼顾了高精度和实时性。采用MobileNetV2作为主干网络,精简上采样过程,提... 自动驾驶领域中,现有的道路场景语义分割算法开销巨大,无法满足自动驾驶的实时性。基于DeepLabV3+的整体结构,提出了一种并行特征处理的轻量级图像语义分割模型,兼顾了高精度和实时性。采用MobileNetV2作为主干网络,精简上采样过程,提升分割速度,并减少网络参数量,以便于网络迁移和训练;引入双注意力机制,与空洞卷积空间金字塔模块结合组成并行特征处理结构,提高分割精度;最后,将MobileNetV2与该并行特征处理结构相结合,以完成对图像特征的提取。实验结果表明,相比于传统模型,所提出模型能以少量的系统开销和网络参数量保证高效且精准的图像分割。模型在Cityscapes数据集mIoU达到73.61%,处理一张512×512的图片仅需25 ms。 展开更多
关键词 语义分割 自动驾驶 轻量级 mobilenetv2 注意力机制
在线阅读 下载PDF
基于改进MobileNetV2的钻杆计数方法 被引量:13
15
作者 张栋 姜媛媛 《工矿自动化》 北大核心 2022年第10期69-75,共7页
针对现有基于人工及仪器的钻杆计数法存在精度较低、耗时耗力,现有基于图像处理的钻杆计数方法难以提取图像特征,网络模型复杂度高、计算量大等问题,提出了一种基于改进MobileNetV2的钻杆计数方法。通过摄像头采集钻机工作状态图像,采... 针对现有基于人工及仪器的钻杆计数法存在精度较低、耗时耗力,现有基于图像处理的钻杆计数方法难以提取图像特征,网络模型复杂度高、计算量大等问题,提出了一种基于改进MobileNetV2的钻杆计数方法。通过摄像头采集钻机工作状态图像,采用数据增强对采集的图像进行预处理,在MobileNetV2的基础上,添加卷积注意力模块增强特征的细化能力,优化目标函数提升识别精度,通过迁移学习获取初始参数。将改进后的MobileNetV2作为钻机工作状态识别模型,提取钻机工作状态特征,通过识别钻杆钻进完整过程中装钻杆、打钻杆、卸钻杆、停机4种钻机工作状态生成置信度数据,通过滑动窗口对置信度数据进行滤波,统计钻杆数量,明确钻孔深度。实验结果表明:改进后的MobileNetV2模型识别准确率达99.95%,与经典分类模型ResNet50,Xception,InceptionV3,InceptionResNetV2,MobileNetV2相比,准确率分别提升了1.35%,1.28%,1.43%,0.85%,1.25%,参数量比MobileNetV2模型减少了38.9%,模型收敛速度更快,综合性能更好。将基于改进MobileNetV2的钻杆计数方法应用于煤矿综采工作面的钻杆计数中,平均钻杆计数精度为98.4%,实现了钻杆精确计数,验证了该方法在复杂环境下应用的可行性和实用性。 展开更多
关键词 煤与瓦斯突出 钻机 钻杆计数 图像处理 卷积神经网络 深度学习 注意力机制 mobilenetv2
在线阅读 下载PDF
基于改进MobileNetV2模型的农作物叶片病害识别研究 被引量:8
16
作者 王焕鑫 沈志豪 +1 位作者 刘泉 刘金江 《河南农业科学》 北大核心 2023年第4期143-151,共9页
为实现基于移动端的农作物叶部病害图像便捷识别,提高农作物病害识别效率进而更好地指导作物病害防治,基于改进的轻量级卷积神经网络MobileNetV2建立农作物病害识别模型。首先,建立含有15种病害叶片和4种健康叶片的农作物数据集,采用数... 为实现基于移动端的农作物叶部病害图像便捷识别,提高农作物病害识别效率进而更好地指导作物病害防治,基于改进的轻量级卷积神经网络MobileNetV2建立农作物病害识别模型。首先,建立含有15种病害叶片和4种健康叶片的农作物数据集,采用数据增强操作进行数据平衡。其次,对MobileNetV2进行改进,引入高效通道注意力(Efficient channel attention,ECA)与注意力特征融合(Attentional feature fusion,AFF),并通过模型剪枝去除冗余层,建立了高性能的轻量级农作物病害识别模型。结果表明:改进MobileNetV2模型参数量与初始MobileNetV2参数量相比减少15.37%,同时识别准确率提升0.9个百分点,达到了98.4%。相比EfficientNet-b0、ShuffleNetV2-0.5X等经典卷积神经网络模型,改进的模型不仅识别准确率最高,且训练过程收敛速度更快。 展开更多
关键词 mobilenetv2 卷积神经网络 农作物病害 轻量型 注意力机制 特征融合 模型剪枝
在线阅读 下载PDF
数字化车间目标轻量级语义分割
17
作者 易佳 陈光柱 +1 位作者 茹青君 李梦宇 《计算机集成制造系统》 EI CSCD 北大核心 2023年第3期920-929,共10页
为了满足数字化车间中生产制造实时的需求,提出一种同时满足准确性与实时性的多金字塔池化轻量级语义分割网络(MPPSNet),旨在实现数字化车间目标的语义分割。MPPSNet网络以改进MobileNetv2作为编码器,能有效减少网络的参数量,提高整体... 为了满足数字化车间中生产制造实时的需求,提出一种同时满足准确性与实时性的多金字塔池化轻量级语义分割网络(MPPSNet),旨在实现数字化车间目标的语义分割。MPPSNet网络以改进MobileNetv2作为编码器,能有效减少网络的参数量,提高整体网络运行的实时性;以多金字塔池化网络作为解码器,融合多层特征信息,提高网络的准确性。经过测试,MPPSNet在公开数据集VOC2012上的效果优于FCN8与BiSeNet,基于自建的车间目标语义分割数据集,对人、机床、移动机器人3类车间目标检测的平均交并比(MIoU)指标达到71.8%,整个网络的参数量为2.55 M,能够满足数字化车间目标图像实时准确分割的需要。 展开更多
关键词 数字化车间 mobilenetv2 实时 轻量级 语义分割
在线阅读 下载PDF
基于迁移学习的轻量化YOLOv2口罩佩戴检测方法 被引量:10
18
作者 张烈平 李智浩 唐玉良 《电子测量技术》 北大核心 2022年第10期112-117,共6页
针对当前佩戴口罩数据集样本数量较少、硬件条件受限的情况下,本文提出了一种基于迁移学习的轻量化YOLOv2口罩佩戴检测方法。该方法以YOLOv2目标检测方法为基础,利用参数迁移学习的MobileNetV2作为特征提取网络,简化了网络模型并提高了... 针对当前佩戴口罩数据集样本数量较少、硬件条件受限的情况下,本文提出了一种基于迁移学习的轻量化YOLOv2口罩佩戴检测方法。该方法以YOLOv2目标检测方法为基础,利用参数迁移学习的MobileNetV2作为特征提取网络,简化了网络模型并提高了训练速度。预训练的MobileNetV2特征提取网络与YOLOv2目标检测网络结合构成口罩佩戴检测网络模型。收集并建立了1000张人脸佩戴口罩图片数据集对网络模型进行训练和测试。实验结果表明,与YOLOv2、SSD300模型相比,MobileNetV2-YOLOv2模型口罩佩戴检测平均准确率提高3.8%、2.7%,检测速度提升2.5和2.4倍。并且在光线不足和密集检测条件下,MobileNetV2-YOLOv2依然可以有效进行口罩佩戴检测,相较于R-CNN和Faster-RCNN具有更好的检测效果,体现了更强的鲁棒性。 展开更多
关键词 计算机神经网络 口罩佩戴检测 迁移学习 YOLOv2 mobilenetv2
在线阅读 下载PDF
基于MobileNetV3-SVDD的雷达信号调制方式开集识别 被引量:8
19
作者 肖易寒 李航 +1 位作者 于祥祯 宋柯 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2022年第8期1178-1185,共8页
针对常见雷达信号调制方式识别方法无法识别未知调制方式的问题,本文提出了一种基于MobileNetV3-SVDD的雷达信号调制方式开集识别方法。将不同调制方式的雷达信号转换成时频图像,使用轻量级深度神经网络MobileNetV3网络提取图像特征。... 针对常见雷达信号调制方式识别方法无法识别未知调制方式的问题,本文提出了一种基于MobileNetV3-SVDD的雷达信号调制方式开集识别方法。将不同调制方式的雷达信号转换成时频图像,使用轻量级深度神经网络MobileNetV3网络提取图像特征。基于一类分类器SVDD构建调制方式超球体来测试识别在训练中未出现过的未知调制方式,完成了对雷达信号调制方式的开集识别。实验结果表明:该方法在信噪比等于8 dB时,已知调制方式识别率均达到100%,未知调制方式识别率均达到95%以上,实现了对未知调制方式的有效分类识别。 展开更多
关键词 调制方式识别 开集识别 时频分析 崔-威廉斯分布 轻量级深度神经网络 mobilenetv3 一类分类器 支持向量数据描述
在线阅读 下载PDF
基于轻量化SSD的车辆及行人检测网络 被引量:15
20
作者 郑冬 李向群 许新征 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2019年第1期73-81,共9页
近年来,基于深度学习的目标检测算法发展迅速.但是由于深度网络规模过大,导致其还不能在嵌入式平台上进行广泛应用.本文针对SSD(Single Shot Multi-box Detector)模型的规模进行优化,引入了轻量化卷积神经网络MobileNetv2,对比了SSD和... 近年来,基于深度学习的目标检测算法发展迅速.但是由于深度网络规模过大,导致其还不能在嵌入式平台上进行广泛应用.本文针对SSD(Single Shot Multi-box Detector)模型的规模进行优化,引入了轻量化卷积神经网络MobileNetv2,对比了SSD和其轻量化版本SSDLite的网络结构,在此基础上提出了基于轻量化SSD的车辆及行人检测模型LVP-DN(Lightweight Vehicle and Pedestrian Detection Network).首先,通过MobilNetv2替代VGG作为基础网络进行特征提取.然后,用轻量化的SSD版本SSDLite替代SSD,从而达到减少模型大小、加快检测速度的目的.进一步通过优化默认候选框的比例,提高了网络对行人的检测精度.最后,在KITTI和PASCAL VOC数据集上分别对比了不同基础网络、输入图像尺寸及是否使用预训练模型这3个因素对网络性能的影响.实验结果表明,相比其他流行的目标检测模型,本文所提出的车辆及行人检测模型在精度、速度和模型大小等评价标准上取得了较好的效果. 展开更多
关键词 目标检测 卷积神经网络 轻量化神经网络 SSD mobilenetv2
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部