期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
基于改进MobileNet v3-small模型的苹果叶片病害识别方法
1
作者 王浩宇 胡玉荣 +3 位作者 崔艳荣 陈华锋 李素若 刘奕 《江苏农业科学》 北大核心 2025年第5期113-120,共8页
针对真实环境下苹果叶片病害识别背景复杂、识别准确率不高的现状,提出基于改进MobileNet v3-small模型的苹果叶片病害识别方法,根据苹果叶片病害特征,在模型主干网络前嵌入Inception v2模型,不仅可增强模型对特征的多尺度感知能力,还... 针对真实环境下苹果叶片病害识别背景复杂、识别准确率不高的现状,提出基于改进MobileNet v3-small模型的苹果叶片病害识别方法,根据苹果叶片病害特征,在模型主干网络前嵌入Inception v2模型,不仅可增强模型对特征的多尺度感知能力,还能使模型更好地捕捉到病害的细微差异,有助于提升特征的多样性;同时在池化层前引入通道混洗,将输入通道分成2个组进行混洗操作,便于通道之间的信息交互,使得模型对特征的整合能力有所提升,有助于提升模型对复杂背景下病害特征的识别效果。采用覆盖斑点落叶病、褐斑病、花叶病、灰斑病和锈病等5种常见病害的图像数据集进行试验。结果表明,改进的模型比原模型平均召回率提升1.98百分点,平均F1分数提升1.97百分点,Top-1准确率提升1.89百分点,平均精确率提升1.88百分点,而参数量仅为17.7 M,与其他经典网络模型相比,性能评估指标均有不同程度的提升。改进的模型可为真实场景下苹果叶片病害的识别提供一种新颖且有效的方法。 展开更多
关键词 苹果叶片病害 图像识别 MobileNet v3-small模型 通道混洗 Inception v2模型
在线阅读 下载PDF
MDS-DeepLabV3+——一种轻量级的复杂山地耕地提取方法
2
作者 殷海倩 甘淑 +2 位作者 袁希平 朱智富 张家铮 《兰州大学学报(自然科学版)》 北大核心 2025年第3期341-349,356,共10页
针对复杂山地空间异质性显著、耕地信息破碎化严重、提取困难等问题,对DeepLabV3+模型进行改进,基于恐龙谷高分二号卫星影像,构建一种用于复杂山地耕地信息自动提取的MDS-DeepLabV3+模型.使用MobileNetV2作为特征提取器,引入其在ImageNe... 针对复杂山地空间异质性显著、耕地信息破碎化严重、提取困难等问题,对DeepLabV3+模型进行改进,基于恐龙谷高分二号卫星影像,构建一种用于复杂山地耕地信息自动提取的MDS-DeepLabV3+模型.使用MobileNetV2作为特征提取器,引入其在ImageNet数据集上的预训练权重,降低复杂度,加速模型拟合;提出密集连接的空间空洞金字塔池化模块与scSE注意力模块结合的DscASPP模块,获取多尺度图像特征,整合空间通道信息.采用CARAFE算子替代原始上采样方法,在较大的感受野范围内聚合上下文信息,实现更准确和高效的特征重建.结果表明,MDS-DeepLabV3+模型平均交并比DeepLabV3+提升6.5%,平均像素准确率增加4.08%,F_(1)上升4.04%,模型参数量仅有3.97 MB.在禄丰数据集上对各种耕地类型的提取效果均优于其他分割网络,有效降低耕地漏提率和误提率,提取效率及准确性较高. 展开更多
关键词 语义分割 高分二号卫星影像 mobilenetv2模型 scSE注意力模块 DeepLabV3+模型
在线阅读 下载PDF
基于改进DeepLabV3+网络的荔枝种植面积提取方法
3
作者 刘振国 孙永旺 +2 位作者 张喜珍 刘宜浩 鲍荣中 《农业工程学报》 北大核心 2025年第12期191-197,共7页
现有的荔枝种植面积遥感提取方法存在提取精度不高、分割效果欠佳、训练时间长以及模型复杂度高等问题。为此该研究提出了改进的DeepLabV3+模型,将主干网络Xception替换为MobileNetV2,保证精度的同时节约时间;构建DenseASPP模块增强多... 现有的荔枝种植面积遥感提取方法存在提取精度不高、分割效果欠佳、训练时间长以及模型复杂度高等问题。为此该研究提出了改进的DeepLabV3+模型,将主干网络Xception替换为MobileNetV2,保证精度的同时节约时间;构建DenseASPP模块增强多尺度特征提取;引入通道注意力机制和条带池化,抑制干扰,提高精度。并与SegFormer、PSPNet和UNet图像分割模型进行对比。结果表明,改进模型的平均交并比(mean intersection over union,MIoU)、平均像素精度(mean pixel accuracy,mPA)和准确率(accuracy,Ac)分别为83.55%、91.58%、91.15%,相比于原始的DeepLabV3+模型分别提高了8.15、5.27、4.97个百分点,而与其他模型对比,该模型通过结构优化将参数量压缩至5.8 M,计算复杂度降为22.4 GFLOPs,较原始的DeepLabV3+降低94%,较PSPNet减少95%。研究结果为准确了解和掌握种植区的空间分布及变迁趋势提供参考。 展开更多
关键词 深度学习 荔枝 语义分割 种植面积提取 DeepLabV3+模型 mobilenetv2
在线阅读 下载PDF
基于改进MobileNetV3-SSD的河道排污口目标检测研究 被引量:1
4
作者 徐伟 王建华 +6 位作者 郑翔 王昱博 冯居 姜洪岩 田雨 钱建华 张欣尧 《环境监测管理与技术》 CSCD 2023年第5期63-67,共5页
为实现对水系入河排污口有效、准确的自动检测,提出一种基于改进MobileNetV3-SSD的深度学习模型。在MobileNetV3-SSD模型的基础上,使用K-means聚类算法和遗传算法,对先验框的宽高比进行调整,使得预测框更好地匹配真实框。引入多尺度特... 为实现对水系入河排污口有效、准确的自动检测,提出一种基于改进MobileNetV3-SSD的深度学习模型。在MobileNetV3-SSD模型的基础上,使用K-means聚类算法和遗传算法,对先验框的宽高比进行调整,使得预测框更好地匹配真实框。引入多尺度特征融合模块,提高模型对小排污口的检测能力。引入改进的CBAM注意力模块,减少模型在排污口检测时计算的参数数量。使用可变形卷积替代普通卷积,自适应地捕获不同排污口的形态与尺度信息,提升模型的特征提取能力。实验结果表明,改进后MobileNetV3-SSD模型的平均精度为89.36%,F1分数为91.88%,较改进前分别提升4.83%和5.03%。 展开更多
关键词 mobilenetv3-SSD模型 图像处理 深度学习 河道排污口
在线阅读 下载PDF
基于改进DeepLabv3+的光伏电站道路识别方法 被引量:2
5
作者 李翠明 王华 +1 位作者 徐龙儿 王龙 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第5期776-782,I0010,共8页
针对移动清洁机器人在光伏电站作业时需要精确快速识别道路的问题,提出一种改进的DeepLabv3+目标识别模型对光伏电站道路进行识别.首先,将原DeepLabv3+模型的主干网络替换为优化的MobileNetv2网络以降低模型复杂度;其次,采用异感受野融... 针对移动清洁机器人在光伏电站作业时需要精确快速识别道路的问题,提出一种改进的DeepLabv3+目标识别模型对光伏电站道路进行识别.首先,将原DeepLabv3+模型的主干网络替换为优化的MobileNetv2网络以降低模型复杂度;其次,采用异感受野融合和空洞深度可分离卷积结合的策略改进空洞空间金字塔池化(ASPP)结构,提高ASPP的信息利用率和模型训练效率;最后,引入注意力机制,提升模型识别精度.结果表明,改进后模型的平均像素准确率为98.06%,平均交并比为95.92%,相比于DeepLabv3+基础模型分别提高了1.79个百分点、2.44个百分点,且高于SegNet、UNet模型.同时,改进后的模型参数量小,实时性好,能够更好地实现光伏电站移动清洁机器人的道路识别. 展开更多
关键词 光伏电站 道路识别 DeepLabv3+模型 注意力机制 mobilenetv2
在线阅读 下载PDF
融合MobileNetV3特征的结构化剪枝方法 被引量:8
6
作者 刘宇 雷雪梅 《上海交通大学学报》 EI CAS CSCD 北大核心 2023年第9期1203-1213,共11页
传统的深度神经网络由于计算量和内存占用庞大,难以部署到嵌入式平台中发挥实用价值,所以轻量级的深度神经网络得到快速发展.其中,谷歌提出的轻量级架构MobileNet具有广泛的应用.为了进一步提高性能,MobileNet的模型由MobileNetV1发展到... 传统的深度神经网络由于计算量和内存占用庞大,难以部署到嵌入式平台中发挥实用价值,所以轻量级的深度神经网络得到快速发展.其中,谷歌提出的轻量级架构MobileNet具有广泛的应用.为了进一步提高性能,MobileNet的模型由MobileNetV1发展到MobileNetV3,但模型变得更为复杂,导致其规模不断扩大,难以发挥轻量级模型的优势.为了在能保持MobileNetV3性能的前提下,降低部署于嵌入式平台的难度,提出一种融合MobileNetV3特征的结构化剪枝方法,对MobileNetV3-Large模型进行裁剪,得到一个更加紧凑的模型.首先对模型进行稀疏正则化训练,得到一个较为稀疏的网络模型;然后使用卷积层的稀疏值和批量归一化层的缩放系数的乘积判别冗余滤波器对其进行结构化剪枝,并在CIFAR-10和CIFAR-100数据集上进行实验.实验结果表明:提出的压缩方法可以有效压缩模型参数,并且压缩后模型仍然能保证良好性能;在准确率不变的前提下,CIFAR-10上模型的参数量减少44.5%,且计算量减少40%. 展开更多
关键词 深度神经网络 轻量级模型 结构化剪枝 mobilenetv3
在线阅读 下载PDF
基于MobileNetV3多尺度特征融合的人脸表情识别 被引量:4
7
作者 薛志超 伊力哈木·亚尔买买提 闫天星 《电子测量技术》 北大核心 2023年第8期38-44,共7页
针对人脸表情识别中普通卷积神经网络特征提取能力不足且识别效率低下的情况,本文提出了一种基于MobileNetV3多尺度特征融合的人脸表情识别。首先利用MobileNetV3进行特征提取以获得高层次情感信息;其次在骨干网络中借鉴DenseNet结构,... 针对人脸表情识别中普通卷积神经网络特征提取能力不足且识别效率低下的情况,本文提出了一种基于MobileNetV3多尺度特征融合的人脸表情识别。首先利用MobileNetV3进行特征提取以获得高层次情感信息;其次在骨干网络中借鉴DenseNet结构,增强特征复用并提升网络重要面部特征表达能力;然后利用特征金字塔模块充分获取人脸图像的深层和浅层多尺度融合特征,从而提高了MobileNetV3的特征提取能力和实时性;最后利用全连接层构建分类器对表情进行分类,从而完成了人脸表情识别。通过实验验证,结果表明,在CK+和FERPlus数据集上识别准确率可以达到88.3%和98.8%,与现有方法相比分别提高了2.3%和1.5%,表明了所提方法识别效果好,泛化能力强。 展开更多
关键词 人脸表情识别 情感分析 mobilenetv3模型 特征金字塔 DenseNet结构
在线阅读 下载PDF
基于改进YOLOv4模型的番茄成熟度检测方法 被引量:10
8
作者 吕金锐 付燕 +2 位作者 倪美玉 曹为刚 杜子涛 《食品与机械》 CSCD 北大核心 2023年第9期134-139,共6页
目的:解决现有番茄成熟度检测方法存在的检测精度低和模型参数量多等问题。方法:基于番茄图像采集系统,提出了一种改进的YOLOv4模型用于番茄成熟度自动检测。将轻量级网络MobileNetv3网络引入模型替换CSPDarkNet53网络,降低模型复杂度。... 目的:解决现有番茄成熟度检测方法存在的检测精度低和模型参数量多等问题。方法:基于番茄图像采集系统,提出了一种改进的YOLOv4模型用于番茄成熟度自动检测。将轻量级网络MobileNetv3网络引入模型替换CSPDarkNet53网络,降低模型复杂度。在SPP模块中采用平均池化替代最大池化,提高算法对小目标的检测精度。在上采样过程中引入注意力机制CBAM增强深浅层特征融合能力,并通过试验验证所提模型的可行性。结果:与常规方法相比,试验方法在番茄成熟度检测中具有较高的检测mAP值和运行效率,且模型参数量较少,mAP值为92.50%,检测速度为37.1 FPS,模型参数量为48 M。结论:该番茄成熟度检测方法能有效降低模型参数和检测时间,具有较高的检测mAP值。 展开更多
关键词 番茄 成熟度 YOLOv4模型 mobilenetv3网络 注意力机制CBAM 平均池化
在线阅读 下载PDF
基于改进YOLOv4模型的群养生猪姿态检测 被引量:3
9
作者 李斌 刘东阳 +4 位作者 时国龙 慕京生 徐浩然 辜丽川 焦俊 《浙江农业学报》 CSCD 北大核心 2023年第1期215-225,共11页
为了提升猪舍环境下生猪姿态检测的速度和性能,在YOLOv4模型的基础上提出一种改进的Mini_YOLOv4模型。首先,该模型将YOLOv4的特征提取网络改为轻量级的MobileNetV3网络结构,以降低模型参数量;其次,在检测网络的CBL_block1、CBL_block2... 为了提升猪舍环境下生猪姿态检测的速度和性能,在YOLOv4模型的基础上提出一种改进的Mini_YOLOv4模型。首先,该模型将YOLOv4的特征提取网络改为轻量级的MobileNetV3网络结构,以降低模型参数量;其次,在检测网络的CBL_block1、CBL_block2模块中使用深度可分离卷积代替传统卷积,避免了复杂模型导致的内存不足和高延迟问题;最后,将原YOLOv4网络每个尺度的最后一层3×3卷积改为Inception网络结构,以提高模型在生猪姿态检测上的准确率。应用上述模型,对生猪的站立、坐立、腹卧、趴卧和侧卧5类姿态进行识别。结果显示,Mini_YOLOv4模型较YOLOv4模型在检测精度上提升了4.01百分点,在检测速度上提升近1倍,在保证识别精度的同时提升了实时性,可为生猪行为识别提供技术参考。 展开更多
关键词 YOLOv4模型 mobilenetv3网络 生猪姿态检测
在线阅读 下载PDF
改进YOLOv5s的轻量化钢材表面缺陷检测模型 被引量:18
10
作者 蒋博 万毅 谢显中 《计算机科学》 CSCD 北大核心 2023年第S02期259-265,共7页
针对现有钢材表面缺陷检测模型结构复杂、参数量多、检测精度和实时性较差等问题,提出了一种改进YOLOv5s的轻量化钢材表面缺陷检测模型。首先采用MobileNetv3-Small网络替换YOLOv5s主干提取网络,实现模型轻量化,提升检测速度;其次在特... 针对现有钢材表面缺陷检测模型结构复杂、参数量多、检测精度和实时性较差等问题,提出了一种改进YOLOv5s的轻量化钢材表面缺陷检测模型。首先采用MobileNetv3-Small网络替换YOLOv5s主干提取网络,实现模型轻量化,提升检测速度;其次在特征融合阶段采用加权双向特征金字塔网络(Bidirectional Feature Pyramid Network,BiFPN)加强特征提取,通过融合不同尺度的特征,提升检测的准确率和鲁棒性。同时引入CBAM(Convolutional Block Attention Module)注意力机制增强模型对小尺度目标的检测能力;最后使用K-means++算法聚类先验框,提高先验框聚类的准确性和收敛速度。改进后的模型在NEU-DET数据集上的平均精度均值(mAP@0.5)达到77.2%,在NVIDIA 1080Ti上检测速度达到102FPS。相较于原始YOLOv5s模型,mAP提升3.90%,参数量减少58.6%,体积减小34%,检测速度提升29.7%。实验结果表明改进的YOLOv5s模型在保证轻量化的同时能够有效提升钢材表面缺陷检测的精度和速度,易于部署,满足带钢实际生产中的需求。 展开更多
关键词 缺陷检测 YOLOv5s 轻量化 mobilenetv3-small BiFPN CBAM K-means++
在线阅读 下载PDF
基于轻量级卷积神经网络的羊绒羊毛识别方法
11
作者 路凯 罗俊丽 +2 位作者 张洋 裴文珂 肖玉麟 《毛纺科技》 CAS 北大核心 2024年第4期94-102,共9页
羊绒、羊毛纤维的形态和物理化学性质十分相似,2种纤维表面鳞片的纹理有所不同,鉴别二者的传统方法显微镜人工鉴别存在速度慢、识别率不高、人力成本高等弊端。针对该问题,文章提出了一种基于轻量级卷积神经网络MobileNetV3_small模型... 羊绒、羊毛纤维的形态和物理化学性质十分相似,2种纤维表面鳞片的纹理有所不同,鉴别二者的传统方法显微镜人工鉴别存在速度慢、识别率不高、人力成本高等弊端。针对该问题,文章提出了一种基于轻量级卷积神经网络MobileNetV3_small模型的纤维识别方法。实验发现:纤维图像中的鳞片纹理模式复杂度有限,轻量级网络能够有效地提取纤维图像中的视觉特征,并根据特征较好地识别出纤维的类别,实验中5种不同的纤维测试集识别率超过97.1%。与其他卷积神经网络相比,轻量级模型MobileNetV3_small速度更快,识别5000个样本只需13 s,适合于纤维商检中的快速检测。 展开更多
关键词 羊绒 羊毛 快速识别 轻量级 mobilenetv3模型
在线阅读 下载PDF
基于改进YOLOv5s的轻量化交通灯检测算法 被引量:1
12
作者 蔡管鸿 李国平 +1 位作者 王国中 滕国伟 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第1期94-105,共12页
针对目前交通灯检测算法网络模型参数量过大、实时性差的问题,提出了一种基于改进YOLOv5s的轻量化交通灯检测算法.首先,用轻量化网络MobileNetv3替换原主干网络并引入注意力机制,在对检测精度影响不大的前提下降低模型参数量;然后,使用... 针对目前交通灯检测算法网络模型参数量过大、实时性差的问题,提出了一种基于改进YOLOv5s的轻量化交通灯检测算法.首先,用轻量化网络MobileNetv3替换原主干网络并引入注意力机制,在对检测精度影响不大的前提下降低模型参数量;然后,使用深度可分离卷积替换颈部网络中的传统标准卷积,进一步降低模型参数量;接着,针对交通灯尺度小的特点,删除检测大目标的检测层;最后,改进边框回归损失函数,提升边框检测精度.同时,为了能实时部署在嵌入式平台,该算法对网络进行通道剪枝实现模型压缩和加速.实验结果表明,该算法在嵌入式平台NVIDIA Jetson Xavier NX上能达到48.1帧/s的检测速度,相比原始YOLOv5s牺牲了1.5%的mAP,但是该模型体积压缩了54.3%,检测速度提高为原来的2.6倍,可以满足在交通道路中实时对交通灯检测的需要. 展开更多
关键词 交通灯检测 轻量化模型 YOLOv5s mobilenetv3 通道剪枝
在线阅读 下载PDF
小样本条件下雷达信号的生成与轻量化识别
13
作者 李辉 王悦悦 +2 位作者 魏坡 邹波蓉 王伟东 《河南理工大学学报(自然科学版)》 CAS 北大核心 2024年第5期142-151,共10页
目的针对目前深度学习方法在雷达信号识别中需要海量数据且网络复杂、计算量大、设备要求高等问题,方法提出一种联合改进CycleGAN和MobileNetV3-Small轻量化卷积神经网络的雷达信号识别算法。首先,选取8种常见的雷达信号类型构建时域序... 目的针对目前深度学习方法在雷达信号识别中需要海量数据且网络复杂、计算量大、设备要求高等问题,方法提出一种联合改进CycleGAN和MobileNetV3-Small轻量化卷积神经网络的雷达信号识别算法。首先,选取8种常见的雷达信号类型构建时域序列,为了更好保留时频特征,在信号预处理阶段将其通过崔-威廉斯分布形成图像数据集,在数据集扩充阶段将图像数据集作为CycleGAN迁移网络的输入,约束指导目标图像的生成,以解决样本不足的问题;然后,在CycleGAN的生成器中引入U-Net结构和残差密集块并更改判别器的判别方式和损失函数,以解决数据集扩增过程中的特征模糊和梯度消失等问题;最后,在信号识别阶段,通过构建具有代表性的MobileNetV3-Small轻量化网络,完成识别验证任务。结果图像生成网络CycleGAN的图像评价指标PSNR为39.74 dB,SSIM为0.95;MobileNet-Small信号识别网络模型迭代训练100次的参数量为1538942,总运行时间为2152 s,FLOPs为127351188,准确率为99.30%。结论本文算法生成的图像与真实样本相似度高、失真度小,在不以牺牲准确率为代价的前提下识别速度有很大提升,有效实现了小样本条件下雷达信号的高精度识别。 展开更多
关键词 雷达信号识别 崔-威廉斯分布 残差密集块 CycleGAN mobilenetv3-small
在线阅读 下载PDF
基于轻量化网络对植物叶斑病的目标检测研究
14
作者 吴晓林 曹兴芹 《现代电子技术》 北大核心 2024年第22期146-152,共7页
为了提高植物叶斑病的检测效率和精度,引入主流的目标检测模型YOLOv5对叶斑病进行检测。结果显示,模型在检测较小的叶斑病时精度不高,且模型权重体积较大,不利于在终端边缘设备上部署。为此,对YOLOv5模型进行改进。首先,采用经过SCSE模... 为了提高植物叶斑病的检测效率和精度,引入主流的目标检测模型YOLOv5对叶斑病进行检测。结果显示,模型在检测较小的叶斑病时精度不高,且模型权重体积较大,不利于在终端边缘设备上部署。为此,对YOLOv5模型进行改进。首先,采用经过SCSE模块修改的MobileNetv3轻量化网络结构替代原有的CSP-Darknet53主干网络,从而降低模型的参数量和计算复杂度;其次,使用K-means++聚类方法优化Anchors参数,使先验框更好地为目标检测模型提供信息,增强模型的性能和泛化能力,减少对标注数据的依赖;最后,在主干网络的最后一层引入ASPPF模块,提高模型在不同尺度上的检测性能。实验结果表明,与原YOLOv5s算法相比,改进方法在植物叶斑病检测任务中表现更优,精确率、召回率和mAP等指标分别提高了2%、2.7%和1.5%,模型大小降低了39.1%。通过优化YOLOv5模型,实现了对不同植物类型大小不一的叶斑病的高效检测,有效降低了模型的大小,并提高了模型的检测精度。 展开更多
关键词 植物叶斑病 目标检测 YOLOv5网络模型 mobilenetv3 K-means++聚类算法 SCSE模块
在线阅读 下载PDF
一种轻量化YOLOv4的遥感影像桥梁目标检测算法 被引量:3
15
作者 余培东 王鑫 +2 位作者 江刚武 刘建辉 徐佰祺 《海洋测绘》 CSCD 北大核心 2022年第2期59-64,共6页
深度学习技术发展迅速,在目标检测中表现出良好的适应性。针对YOLOv4算法在遥感影像桥梁目标检测任务中的检测效率较低和模型轻量化不足问题,使用轻量化的MobileNetv3骨干网络替换原始CSPDarkNet53骨干网络,将传统卷积层替换为深度超参... 深度学习技术发展迅速,在目标检测中表现出良好的适应性。针对YOLOv4算法在遥感影像桥梁目标检测任务中的检测效率较低和模型轻量化不足问题,使用轻量化的MobileNetv3骨干网络替换原始CSPDarkNet53骨干网络,将传统卷积层替换为深度超参数化卷积层(DO_Conv),提出一种兼具精度和检测效率的轻量化模型。实验表明:比较原始YOLOv4算法,本文算法将模型权重降低55%,检测效率提升70%以上,证明了本文改进之处的有效性;在精度方面,本文算法在与SSD、RetinaNet、YOLOv3和CenterNet等经典目标检测算法比较中仍保持精度优势。与YOLOv4算法相比,本文算法在难度较低的检测任务中精度损失较低,但在检测难度较高的DOTA桥梁数据集中精度损失明显。 展开更多
关键词 桥梁目标检测 YOLOv4算法 mobilenetv3算法 深度超参数化卷积 轻量化模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部