期刊文献+
共找到262篇文章
< 1 2 14 >
每页显示 20 50 100
基于改进MobileNetV3—Small的甘薯外部品质分类方法
1
作者 马瑞峻 丁世春 陈瑜 《中国农机化学报》 北大核心 2025年第4期211-217,共7页
传统图像处理技术依靠人工提取特征,费时费力且难以提取到准确的特征。为准确实现对甘薯发芽、霉腐、损伤和正常品质的分类,提出一种改进的MobileNetV3—Small(M3S)分类方法。使用高效通道注意力(ECA)模块替换M3S中的压缩激励(SE)模块,... 传统图像处理技术依靠人工提取特征,费时费力且难以提取到准确的特征。为准确实现对甘薯发芽、霉腐、损伤和正常品质的分类,提出一种改进的MobileNetV3—Small(M3S)分类方法。使用高效通道注意力(ECA)模块替换M3S中的压缩激励(SE)模块,构建ECA—M3S模型结构;基于迁移学习训练模型,并对比不同学习率组合的训练效果;测试甘薯品质分类模型的性能,同时和多种模型进行对比,并使用Flask设计网页界面展示测试结果。结果表明,初始学习率为0.01,学习率衰减速率为0.5时,模型整体性能最优,验证准确率为92.82%,训练损失为0.0492;和其他10种不同复杂度的模型进行对比,该模型对4类甘薯品质的召回率均高于90%,测试平均准确率为92.43%,仅比最高的模型低0.79%,比未改进的M3S高3.59%,且模型尺寸仅为4.18 MB,仅比尺寸最小的SqueezeNet模型大1.34 MB。 展开更多
关键词 甘薯 外部品质 mobilenetv3—small 高效通道注意力 迁移学习
在线阅读 下载PDF
基于MobileNetV3Small-ECA的水稻病害轻量级识别研究 被引量:26
2
作者 袁培森 欧阳柳江 +1 位作者 翟肇裕 田永超 《农业机械学报》 EI CAS CSCD 北大核心 2024年第1期253-262,共10页
为实现水稻病害的轻量化识别与检测,使用ECA注意力机制改进MobileNetV3Small模型,并使用共享参数迁移学习对水稻病害进行智能化轻量级识别和检测。在PlantVillage数据集上进行预训练,将预训练得到的共享参数迁移到对水稻病害识别模型上... 为实现水稻病害的轻量化识别与检测,使用ECA注意力机制改进MobileNetV3Small模型,并使用共享参数迁移学习对水稻病害进行智能化轻量级识别和检测。在PlantVillage数据集上进行预训练,将预训练得到的共享参数迁移到对水稻病害识别模型上微调优化。在开源水稻病害数据集上进行试验测试,试验结果表明,在非迁移学习下,识别准确率达到97.47%,在迁移学习下识别准确率达到99.92%,同时参数量减少26.69%。其次,通过Grad-CAM进行可视化,本文方法与其他注意力机制CBAM和SENET相比,ECA模块生成的结果与图像中病斑的位置和颜色更加一致,表明网络可以更好地聚焦水稻病害的特征,并且通过可视化和各水稻病害分析了误分类原因。本文方法实现了水稻病害识别模型的轻量化,使其能够在移动设备等资源受限的场景中部署,达到快速、高效、便携的目的。同时开发了基于Android的水稻病害识别系统,方便于在边缘端进行水稻病害识别分析。 展开更多
关键词 水稻病害识别 迁移学习 高效通道注意力机制 mobilenetv3small 移动端部署
在线阅读 下载PDF
基于改进MobileNetV3的笼养蛋鸡声音分类识别方法 被引量:2
3
作者 衡一帆 盛哲雅 +3 位作者 严煜 谷月 周昊博 王树才 《农业机械学报》 北大核心 2025年第4期427-435,共9页
为实现笼养蛋鸡声音的准确分类,实现蛋鸡健康、情绪、生产状态等信息的智能化、非接触式检测,提出了一种基于改进MobileNetV3的笼养蛋鸡声音分类识别方法。以欣华二号蛋鸡为研究对象,采集蛋鸡在笼养条件下发出的热应激声、惊吓声、产蛋... 为实现笼养蛋鸡声音的准确分类,实现蛋鸡健康、情绪、生产状态等信息的智能化、非接触式检测,提出了一种基于改进MobileNetV3的笼养蛋鸡声音分类识别方法。以欣华二号蛋鸡为研究对象,采集蛋鸡在笼养条件下发出的热应激声、惊吓声、产蛋声以及鸣唱声,经过声音预处理将一维声音信号转化为三维梅尔频谱图,建立了包括8541幅梅尔频谱图的蛋鸡声音数据集。通过在MobileNetV3中引入高效通道注意力(Efficient channel attention,ECA)模块,提高了笼养蛋鸡声音分类准确率。试验结果表明,MobileNetV3-ECA模型准确率、召回率、精确率以及F1分数分别达到95.25%、95.16%、95.02%、95.08%,相比原始模型分别提高1.99、2.08、2.00、2.04个百分点。通过与分别引入坐标注意力(Coordinate attention,CA)、卷积块注意力模块(Convolutional block attention module,CBAM)的模型对比,引入ECA模块后模型准确率分别提高2.11、2.03个百分点,其他指标同样有更明显的提高。与ShuffleNetV2、DesNet121和EfficientNetV2模型相比,MobileNetV3-ECA准确率分别提高1.99、2.03、2.50个百分点。本文提出的基于MobileNetV3-ECA的蛋鸡声音分类识别方法,能够有效且准确地实现对包括热应激声在内的不同种类蛋鸡声音分类识别,为蛋鸡规模化养殖中的自动化、智能化声音检测提供了算法支持,为禽舍巡检机器人功能优化提供了参考,同时为规模化笼养蛋鸡热应激预警开辟了思路。 展开更多
关键词 笼养蛋鸡 声音分类 mobilenetv3 高效通道注意力 梅尔频谱图 卷积神经网络
在线阅读 下载PDF
基于改进MobileNetV3的茶叶做青图像检测方法
4
作者 胡龙杰 张林鍹 +2 位作者 项凤华 巴音塔娜 黄为民 《南京农业大学学报》 北大核心 2025年第5期1212-1222,共11页
[目的]茶叶的做青过程是塑造茶叶“金镶边”色泽与发酵风味的核心环节,但传统茶叶做青过程中需要人工频繁打开做青桶检查茶叶发酵情况。这种方式不仅劳动强度大且发酵程度的判断受工人主观因素影响,难以形成统一、稳定的标准,造成茶叶... [目的]茶叶的做青过程是塑造茶叶“金镶边”色泽与发酵风味的核心环节,但传统茶叶做青过程中需要人工频繁打开做青桶检查茶叶发酵情况。这种方式不仅劳动强度大且发酵程度的判断受工人主观因素影响,难以形成统一、稳定的标准,造成茶叶发酵品质参差不齐,因此为了实现做青过程中做青容器内叶片发酵进展的智能检测,提出了一种基于改进MobileNetV3的茶叶做青图像检测识别模型。[方法]针对做青叶片识别任务中“金边”目标分布不规则且多为小目标难检测的特点,提出一种高效多尺度通道注意力(efficient multi-scale channel attention,EMCA)模块,旨在轻量化网络结构的同时,实现对小目标及边缘细节的精确捕捉,降低特征的漏检现象。此外,为使模型充分理解小目标所处环境,建立深浅特征图间的长短期依赖关系,对原有精简空间池化解码头(lite reduce atrous spatial pyramid pooling,LRASPP)进行了改进,使不同尺度的特征图进行信息交互与融合,进而提高特征表示的丰富度与准确性。[结果]该算法在自建茶叶做青数据集上进行试验,模型平均交并比82.95%,平均像素准确率90.53%,模型参数量1.823 M。相比MobileNetV3模型,其平均交并比和平均像素准确率分别提高4.93%和8.26%,参数量减少44%。[结论]该方法能够实现做青过程中茶叶做青程度的精确识别,对于实现茶叶做青过程智能化具有重要意义。 展开更多
关键词 图像识别 语义分割 茶叶 mobilenetv3 树莓派
在线阅读 下载PDF
融合MobileNetv3的轻量级YOLOv8钢材表面缺陷检测
5
作者 胡名琪 陈辉明 +2 位作者 徐伟 郭诚君 刘秋明 《科学技术与工程》 北大核心 2025年第16期6831-6840,共10页
针对钢材表面缺陷人工检测成本高昂、检测精度不高,以及传统的目标检测方法模型复杂,导致对终端检测设备的计算资源要求较高等问题,融合MobileNetv3轻量化YOLOv8算法提出一种轻量级缺陷检测算法YOLOv8n-MDC。首先,以YOLOv8n为基础,将YOL... 针对钢材表面缺陷人工检测成本高昂、检测精度不高,以及传统的目标检测方法模型复杂,导致对终端检测设备的计算资源要求较高等问题,融合MobileNetv3轻量化YOLOv8算法提出一种轻量级缺陷检测算法YOLOv8n-MDC。首先,以YOLOv8n为基础,将YOLOv8n的自带IoU(intersection over union)候选框损失函数替换成WIoU(weighted IoU)函数,通过增添非单调聚焦机制,提高模型的鲁棒性。其次,使用MobileNetv3网络替换YOLOv8n的骨干特征提取网络模块,将轻量级网络用于特征提取端降低网络复杂度,减少冗余开销。最后,在特征融合阶段使用DW卷积和C3Ghost模块对原网络的相应模块进行替换,使改进后的网络减少模型参数,进一步提升检测速度。使用钢材表面缺陷数据集NEU-DET进行模型验证,YOLOv8n-MDC模型mAP达81.3%,较YOLOv8n模型提升5%;参数量与计算量分别为1.02 M和2.1 GFLOPs,仅为原模型的33.9%和25.9%,达到工业要求。提出的轻量级算法在保证检测精度提升的同时大大降低了算法的复杂度和计算资源的开销,为钢材表面缺陷检测提供了一个优化思路。 展开更多
关键词 钢材表面缺陷 缺陷检测 轻量级网络 YOLOv8 mobilenetv3
在线阅读 下载PDF
基于改进MobileNetV3-Large食物图像分类算法研究
6
作者 何伟婵 杨志景 秦景辉 《粮油食品科技》 北大核心 2025年第2期90-96,共7页
食物图像识别在食物安全监控、营养分析以及饮食推荐系统中发挥重要作用。然而,食物图像的多样性、复杂性以及光照等外部因素给识别任务带来了诸多难度和挑战。为了解决这些问题,提出了一种基于改进MobileNetV3-Large食物图像分类算法。... 食物图像识别在食物安全监控、营养分析以及饮食推荐系统中发挥重要作用。然而,食物图像的多样性、复杂性以及光照等外部因素给识别任务带来了诸多难度和挑战。为了解决这些问题,提出了一种基于改进MobileNetV3-Large食物图像分类算法。在MobileNetV3-Large预训练模型基础上,引入PReLu激活函数和NAM注意力机制,通过捕捉图像中的非局部依赖关系来增强模型对关键特征的关注度;引入了多任务损失函数,通过同时优化多个相关任务来进一步提升分类性能;采用了TrivialAugment数据增强技术,通过扩展训练数据集的规模和多样性来增强模型的泛化能力。实验结果表明,通过这些改进,模型在Food-101数据集上的准确率从66.9%提升至84.2%,证明了所提方法的有效性。 展开更多
关键词 mobilenetv3-Large NAM注意力机制 PReLu激活函数 TrivialAugment数据增强
在线阅读 下载PDF
基于Opt-MobileNetV3的大豆种子异常籽粒识别研究 被引量:3
7
作者 陈思羽 朱红媛 +3 位作者 王俊发 于添 王贞旭 刘春山 《农业机械学报》 EI CAS CSCD 北大核心 2023年第S02期359-365,共7页
针对大豆异常籽粒识别模型参数量过大、计算成本高、准确率较低等问题,提出了一种改进的轻量级神经网络MobileNetV3模型,将其层数减少,加快模型的训练和推理速度,增加全连接层和Softmax层以增加模型的非线性判别能力以及利于多分类任务... 针对大豆异常籽粒识别模型参数量过大、计算成本高、准确率较低等问题,提出了一种改进的轻量级神经网络MobileNetV3模型,将其层数减少,加快模型的训练和推理速度,增加全连接层和Softmax层以增加模型的非线性判别能力以及利于多分类任务的输出,使用全局平均池化代替全局最大池化减少信息丢失,通过添加Dropout层以及去掉MobileNetV3中SE Block注意力机制来增加模型的泛化能力。试验结果表明:将大豆籽粒图像数据经过传统的卷积神经网络AlexNet、VGG16与轻量级神经网络MobilenetV3训练测试结果进行对比,AlexNet算法最终平均精度均值(Mean average precision,mAP)为87.3%、VGG16算法为87.7%,二者mAP相差较小,但两者在训练过程中模型内存占用量及训练时间相差较大,其中AlexNet模型内存占用量为7070 kB,训练时间为5420.59 s,而VGG16模型内存占用量为19674 kB,训练时间为8282.68 s,整体来看AlexNet相对更好。通过对轻量级神经网络MobileNetV3模型的识别训练,最终模型内存占用量为32153 kB,训练时间为6298.29 s,mAP达到90.6%,相比两个传统算法更高,更适合大豆异常籽粒的分类识别。为了提高训练精度及速度,通过对MobileNetV3网络模型结构调整改进,最终优化改进后的Opt-MobileNetV3网络模型mAP达到95.7%,相较传统MobileNetV3神经网络mAP提高5.1个百分点,模型内存占用量为9317 kB,减小22836 kB,同时训练时间节省696.57 s。优化后的模型实现了模型减小、准确率提高、训练速度加快,可完成大豆异常籽粒识别任务。 展开更多
关键词 大豆种子 异常籽粒 mobilenetv3 籽粒识别
在线阅读 下载PDF
基于改进MobileNetV3-Large的鸡蛋新鲜度识别模型 被引量:16
8
作者 刘雪 沈长盈 +3 位作者 吕学泽 董萌萍 包乾辉 张圆之 《农业工程学报》 EI CAS CSCD 北大核心 2022年第17期196-204,共9页
鸡蛋在运输贮存过程中一直伴随着品质的不断衰减,如何快速、准确地识别鸡蛋新鲜度是业界和学者们共同关注的话题。针对鸡蛋内部气室和蛋黄等新鲜度特征差异不显著的问题,该研究提出一种基于改进MobileNetV3-Large的轻量级鸡蛋新鲜度识... 鸡蛋在运输贮存过程中一直伴随着品质的不断衰减,如何快速、准确地识别鸡蛋新鲜度是业界和学者们共同关注的话题。针对鸡蛋内部气室和蛋黄等新鲜度特征差异不显著的问题,该研究提出一种基于改进MobileNetV3-Large的轻量级鸡蛋新鲜度识别模型。首先在深度可分离卷积中引入动态卷积(DynamicConvolution,DC)模块,改进后的深度可分离动态卷积模块能够为不同的鸡蛋图像动态生成卷积核参数,提高模型特征提取能力;其次在注意力模块中引入坐标注意力(Coordinate Attention,CA)模块,增强模型对位置信息的感知能力;最后采用3276张鸡蛋图像训练并测试改进的MobileNetV3-DA模型。试验结果表明,MobileNetV3-DA模型在测试集上的准确率为97.26%,分别比ResNet18、VGG19和ShuffleNetV2模型高5.19、0.84和5.91个百分点;模型参数量和计算量分别比MobileNetV3-Large减少1.03和78.64 M;在实际应用中,MobileNetV3-DA模型精确率、召回率和加权分数的平均值分别为95.95%、95.48%和97.82%,达到了理想的识别效果。改进的MobileNetV3-DA模型为鸡蛋供应链各环节进行鸡蛋新鲜度快速、准确识别提供了算法支持。 展开更多
关键词 农产品 品质控制 鸡蛋新鲜度 mobilenetv3-DA 动态卷积 坐标注意力
在线阅读 下载PDF
基于改进MobileNetV3的水稻病害识别模型 被引量:16
9
作者 崔金荣 魏文钊 赵敏 《农业机械学报》 EI CAS CSCD 北大核心 2023年第11期217-224,276,共9页
针对水稻病害识别方法准确度低、模型收敛速度缓慢的问题,本文提出了一种高性能的轻量级水稻病害识别模型,简称为CA(Coordinate attention)-MobileNetV3。通过微调的迁移学习策略完善了模型的训练,提升了模型收敛速度。首先创建10个种... 针对水稻病害识别方法准确度低、模型收敛速度缓慢的问题,本文提出了一种高性能的轻量级水稻病害识别模型,简称为CA(Coordinate attention)-MobileNetV3。通过微调的迁移学习策略完善了模型的训练,提升了模型收敛速度。首先创建10个种类的数据集,其中包含9种水稻病害和1种水稻健康叶片。其次使用CA模块,在通道注意力中嵌入空间坐标信息,提高模型的特征提取能力与泛化能力。最后,将改进后的MobileNetV3网络作为特征提取网络,并加入SVM多分类器,提高模型精度。实验结果表明,在本文构建的水稻病害数据集上,初始的MobileNetV3识别准确率仅为95.78%,F1值为95.36%;加入CA模块后识别准确率和F1值分别提高至96.73%和96.56%;再加入SVM多分类器,通过迁移学习后,改进模型的识别准确率和F1值分别达到97.12%和97.04%,参数量和耗时仅为2.99×106和0.91 s,明显优于其他模型。本文提出的CA-MobileNetV3水稻病害识别模型能够有效识别水稻叶部病害,实现了轻量级、高性能、易部署的水稻病害分类识别算法。 展开更多
关键词 水稻病害 改进mobilenetv3 卷积神经网络 注意力机制 支持向量机
在线阅读 下载PDF
基于改进MobileNetV3-SSD的河道排污口目标检测研究 被引量:1
10
作者 徐伟 王建华 +6 位作者 郑翔 王昱博 冯居 姜洪岩 田雨 钱建华 张欣尧 《环境监测管理与技术》 CSCD 2023年第5期63-67,共5页
为实现对水系入河排污口有效、准确的自动检测,提出一种基于改进MobileNetV3-SSD的深度学习模型。在MobileNetV3-SSD模型的基础上,使用K-means聚类算法和遗传算法,对先验框的宽高比进行调整,使得预测框更好地匹配真实框。引入多尺度特... 为实现对水系入河排污口有效、准确的自动检测,提出一种基于改进MobileNetV3-SSD的深度学习模型。在MobileNetV3-SSD模型的基础上,使用K-means聚类算法和遗传算法,对先验框的宽高比进行调整,使得预测框更好地匹配真实框。引入多尺度特征融合模块,提高模型对小排污口的检测能力。引入改进的CBAM注意力模块,减少模型在排污口检测时计算的参数数量。使用可变形卷积替代普通卷积,自适应地捕获不同排污口的形态与尺度信息,提升模型的特征提取能力。实验结果表明,改进后MobileNetV3-SSD模型的平均精度为89.36%,F1分数为91.88%,较改进前分别提升4.83%和5.03%。 展开更多
关键词 mobilenetv3-SSD模型 图像处理 深度学习 河道排污口
在线阅读 下载PDF
基于MobileNetV3-SVDD的雷达信号调制方式开集识别 被引量:9
11
作者 肖易寒 李航 +1 位作者 于祥祯 宋柯 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2022年第8期1178-1185,共8页
针对常见雷达信号调制方式识别方法无法识别未知调制方式的问题,本文提出了一种基于MobileNetV3-SVDD的雷达信号调制方式开集识别方法。将不同调制方式的雷达信号转换成时频图像,使用轻量级深度神经网络MobileNetV3网络提取图像特征。... 针对常见雷达信号调制方式识别方法无法识别未知调制方式的问题,本文提出了一种基于MobileNetV3-SVDD的雷达信号调制方式开集识别方法。将不同调制方式的雷达信号转换成时频图像,使用轻量级深度神经网络MobileNetV3网络提取图像特征。基于一类分类器SVDD构建调制方式超球体来测试识别在训练中未出现过的未知调制方式,完成了对雷达信号调制方式的开集识别。实验结果表明:该方法在信噪比等于8 dB时,已知调制方式识别率均达到100%,未知调制方式识别率均达到95%以上,实现了对未知调制方式的有效分类识别。 展开更多
关键词 调制方式识别 开集识别 时频分析 崔-威廉斯分布 轻量级深度神经网络 mobilenetv3 一类分类器 支持向量数据描述
在线阅读 下载PDF
基于改进轻量级卷积神经网络MobileNetV3的番茄叶片病害识别 被引量:23
12
作者 周巧黎 马丽 +1 位作者 曹丽英 于合龙 《智慧农业(中英文)》 2022年第1期47-56,共10页
番茄病害的及时检测可有效提升番茄的质量和产量。为实现番茄病害的实时无损伤检测,本研究提出了一种基于改进MobileNetV3的番茄叶片病害分类识别方法。首先选择轻量级卷积神经网络MobileNetV3,在Image Net数据集上进行预训练,将预训练... 番茄病害的及时检测可有效提升番茄的质量和产量。为实现番茄病害的实时无损伤检测,本研究提出了一种基于改进MobileNetV3的番茄叶片病害分类识别方法。首先选择轻量级卷积神经网络MobileNetV3,在Image Net数据集上进行预训练,将预训练得到的共享参数迁移到对番茄叶片病害识别的模型上并做微调处理。采用相同的训练方法对VGG16、ResNet50和Inception-V3三种深度卷积网络模型也进行迁移学习并进行对比,结果显示MobileNetV3的总体学习效果最好,在Mixup混合增强和focal loss损失函数下对10类番茄病害的平均测试识别准确率达到94.68%。在迁移学习的基础上继续改进MobileNetV3模型,在卷积层引入空洞卷积和感知机结构,采用GLU(Gated Liner Unit)闸门机制激活函数,训练得到最佳的番茄病害识别模型,平均测试的识别准确率98.25%,模型的数据规模43.57 MB,单张番茄病害图像的检测耗时仅0.27 s。经十折交叉验证(10-Fold Cross-Validation),模型的鲁棒性良好。本研究可为番茄叶片病害的实时检测提供理论基础和技术支持。 展开更多
关键词 番茄病害识别 卷积神经网络 迁移学习 mobilenetv3 激活函数 识别分类
在线阅读 下载PDF
基于知识蒸馏与RP-MobileNetV3的电能质量复合扰动识别 被引量:15
13
作者 贺才郡 李开成 +4 位作者 董宇飞 宋朝霞 肖贤贵 李贝奥 李旋 《电力系统保护与控制》 EI CSCD 北大核心 2023年第14期75-84,共10页
针对复合电能质量扰动(power quality disturbance,PQD)识别中特征提取复杂、识别正确率低和模型难以轻量化等问题,提出一种利用递归图(recurrence plot,RP)对PQD信号可视化方法和基于知识蒸馏的模型训练方法。首先,基于RP挖掘PQD信号... 针对复合电能质量扰动(power quality disturbance,PQD)识别中特征提取复杂、识别正确率低和模型难以轻量化等问题,提出一种利用递归图(recurrence plot,RP)对PQD信号可视化方法和基于知识蒸馏的模型训练方法。首先,基于RP挖掘PQD信号隐含特征并构建图像数据集,并利用深度残差收缩网络(deep residual shrinkage network,DRSN)对图像数据集进行更深层次特征提取并完成自主分类。然后,基于知识蒸馏(knowledge distillation,KD)让已训练的DRSN指导轻量化网络MobileNetV3进行训练,通过蒸馏实现知识的跨网络传输。最后,仿真实验和硬件实验表明,利用知识蒸馏训练的MobileNetV3能实现高精度且轻量化的复合扰动识别,同时在30 dB噪声环境下正确率能提升1.06%,对实际扰动信号识别效果良好,具有良好的噪声鲁棒性。 展开更多
关键词 电能质量扰动 递归图 图像 深度残差收缩网络 知识蒸馏 mobilenetv3
在线阅读 下载PDF
融合MobileNetV3特征的结构化剪枝方法 被引量:10
14
作者 刘宇 雷雪梅 《上海交通大学学报》 EI CAS CSCD 北大核心 2023年第9期1203-1213,共11页
传统的深度神经网络由于计算量和内存占用庞大,难以部署到嵌入式平台中发挥实用价值,所以轻量级的深度神经网络得到快速发展.其中,谷歌提出的轻量级架构MobileNet具有广泛的应用.为了进一步提高性能,MobileNet的模型由MobileNetV1发展到... 传统的深度神经网络由于计算量和内存占用庞大,难以部署到嵌入式平台中发挥实用价值,所以轻量级的深度神经网络得到快速发展.其中,谷歌提出的轻量级架构MobileNet具有广泛的应用.为了进一步提高性能,MobileNet的模型由MobileNetV1发展到MobileNetV3,但模型变得更为复杂,导致其规模不断扩大,难以发挥轻量级模型的优势.为了在能保持MobileNetV3性能的前提下,降低部署于嵌入式平台的难度,提出一种融合MobileNetV3特征的结构化剪枝方法,对MobileNetV3-Large模型进行裁剪,得到一个更加紧凑的模型.首先对模型进行稀疏正则化训练,得到一个较为稀疏的网络模型;然后使用卷积层的稀疏值和批量归一化层的缩放系数的乘积判别冗余滤波器对其进行结构化剪枝,并在CIFAR-10和CIFAR-100数据集上进行实验.实验结果表明:提出的压缩方法可以有效压缩模型参数,并且压缩后模型仍然能保证良好性能;在准确率不变的前提下,CIFAR-10上模型的参数量减少44.5%,且计算量减少40%. 展开更多
关键词 深度神经网络 轻量级模型 结构化剪枝 mobilenetv3
在线阅读 下载PDF
基于深度迁移网络MobileNetV3的地形识别 被引量:5
15
作者 姚燕 胡立坤 郭军 《广西大学学报(自然科学版)》 CAS 北大核心 2021年第4期996-1007,共12页
传统地形识别算法,主要建立在人工提取特征和训练分类器的前提上,其通用能力有限且准确度不高,或者需要大量的数据集训练基础,这种方法训练的网络模型参数较大且预测耗时较长,不利于移植到移动端。因此,运用迁移学习思想,提出了一种基... 传统地形识别算法,主要建立在人工提取特征和训练分类器的前提上,其通用能力有限且准确度不高,或者需要大量的数据集训练基础,这种方法训练的网络模型参数较大且预测耗时较长,不利于移植到移动端。因此,运用迁移学习思想,提出了一种基于深度迁移网络的地形识别算法。采用轻量级卷积神经网络MobileNetV3,在爬虫获取和自建适量数据集基础上,对神经网络进行迁移学习。首先,采用图像分类数据集ImageNet上的预训练成果,根据预训练模型权重对MobileNetV3网络进行初始化,实现对模型大规模共享参数的迁移;然后,通过在自建数据集GXU-Terrain6上进行新的训练,微调模型参数,进而得到新的分类模型;最后,利用训练好的模型对地形类别进行预测,从而完成识别任务。提出算法在GXU-Terrain6测试集上取得了93.00%的平均预测准确率。实验结果表明,基于深度迁移的地形识别算法运用较少数据,可获得较高的识别准确率,网络实时性好,适合向移动端移植。 展开更多
关键词 地形识别 迁移学习 mobilenetv3 轻量级网络 移动端
在线阅读 下载PDF
基于电子舌和电子眼结合改进MobileNetv3的黄芪快速溯源检测 被引量:6
16
作者 金鑫宁 刘铭 +2 位作者 桑恒亮 马云霞 王志强 《食品与机械》 CSCD 北大核心 2023年第6期37-47,共11页
目的:实现对不同产地黄芪的快速溯源检测。方法:提出了一种基于电子舌和电子眼结合改进MobileNetv3网络的黄芪产地快速检测方法。采用电子舌和电子眼分别采集不同黄芪样本的一维指纹图谱信息和二维外观图像信息。利用格拉姆角场(Gramian... 目的:实现对不同产地黄芪的快速溯源检测。方法:提出了一种基于电子舌和电子眼结合改进MobileNetv3网络的黄芪产地快速检测方法。采用电子舌和电子眼分别采集不同黄芪样本的一维指纹图谱信息和二维外观图像信息。利用格拉姆角场(Gramian angular field,GAF)将一维电子舌信号转换为二维图像信息,保留电子舌信号中时间序列相关特征,再将其与电子眼采集的图像信息进行数据融合,采用基于金字塔切分注意力机制(Pyramid split attention,PSA)改进的MobileNetv3模型实现对不同产地黄芪样本的分类识别。结果:相较于单独使用电子舌或者电子眼,该方法具有更高的识别准确率,其测试集准确率、精确率、召回率和F_(1)-Score分别达到98.8%,98.8%,98.8%和0.99。改进的MobileNetv3网络分类准确率较原始模型提高了8%,参数量仅为原参数量的20%左右。结论:改进的MobileNetv3网络可以有效减少参数的计算量,提高不同产地黄芪识别的准确率。 展开更多
关键词 电子舌 电子眼 格拉姆角场 数据融合 mobilenetv3 黄芪
在线阅读 下载PDF
基于MobileNetV2-DeepLabv3+的混凝土坝水下裂缝语义分割模型 被引量:5
17
作者 何旺 钮新强 +1 位作者 田金章 朱延涛 《水利水电科技进展》 CSCD 北大核心 2024年第6期106-112,共7页
为解决深度学习算法难以有效检测混凝土坝水下裂缝的问题,构建了基于MobileNetV2-DeepLabv3+的混凝土坝水下裂缝语义分割模型。该模型引入轻量化网络MobileNetV2,同时将深层特征下采样倍数降为8,以提高小数据集工况下的识别准确率和推... 为解决深度学习算法难以有效检测混凝土坝水下裂缝的问题,构建了基于MobileNetV2-DeepLabv3+的混凝土坝水下裂缝语义分割模型。该模型引入轻量化网络MobileNetV2,同时将深层特征下采样倍数降为8,以提高小数据集工况下的识别准确率和推理速度;将交叉熵损失函数与Dice损失函数的组合作为模型的损失函数,以缓解类别不平衡问题。工程实例验证结果表明:该模型在测试集上的平均像素准确率和平均交并比分别高达90.87%和86.33%,满足水下裂缝语义分割精度要求;典型工况下的混凝土坝水下裂缝的分割效果优于其他对比模型,泛化能力强;模型具有内存占比小、推理速度快的特点,可用于混凝土坝水下裂缝的检测。 展开更多
关键词 混凝土坝 水下裂缝 mobilenetv2-DeepLabv3+ 语义分割 机器视觉
在线阅读 下载PDF
基于MobileNetV3-large模型的葡萄品种识别 被引量:5
18
作者 梁长梅 刘正乾 +1 位作者 李艳文 杨华 《山西农业科学》 2023年第7期824-831,共8页
葡萄品种繁多、性状各异,识别葡萄品种速度慢、精度低、成本高,且主观性强、时效性差。因而,开发识别速度快、精度高、成本低、时效性强的葡萄品种识别技术具有重要理论意义和实践价值。为实现葡萄品种的无损、高效识别,为精准农业提供... 葡萄品种繁多、性状各异,识别葡萄品种速度慢、精度低、成本高,且主观性强、时效性差。因而,开发识别速度快、精度高、成本低、时效性强的葡萄品种识别技术具有重要理论意义和实践价值。为实现葡萄品种的无损、高效识别,为精准农业提供理论基础,以早黑宝、无核早红、夏黑、红地球和阳光玫瑰等5个鲜食葡萄品种为试材,基于其叶片形态特征,采用迁移学习网络模型MobileNet-large,分析该模型在5个葡萄品种上迁移学习的效果,比较3种MobileNet-large网络模型的训练结果,从而构建基于叶片图像的MobileNetV3-large葡萄品种识别模型。结果表明,训练前迁移学习能够显著提高葡萄品种的识别率,无核早红正确识别率可达100%;MobileNetV3-large训练结果的准确率、召回率、F1-score、AUC等因葡萄品种、学习率不同而不同,当学习率为0.005时,MobileNetV3-large模型网络训练损失值最小,其中,红地球葡萄准确率最高。比较3种MobileNet-large网络模型可知,MobileNetV3-large模型整体表现最佳,在训练中第27轮开始收敛,Top-1准确率高达90.56%,平均准确率为97.50%。说明MobileNetV3-large模型是适宜的葡萄品种识别网络模型。 展开更多
关键词 葡萄 mobilenetv3-large 迁移学习 品种识别
在线阅读 下载PDF
基于MobileNetV3多尺度特征融合的人脸表情识别 被引量:4
19
作者 薛志超 伊力哈木·亚尔买买提 闫天星 《电子测量技术》 北大核心 2023年第8期38-44,共7页
针对人脸表情识别中普通卷积神经网络特征提取能力不足且识别效率低下的情况,本文提出了一种基于MobileNetV3多尺度特征融合的人脸表情识别。首先利用MobileNetV3进行特征提取以获得高层次情感信息;其次在骨干网络中借鉴DenseNet结构,... 针对人脸表情识别中普通卷积神经网络特征提取能力不足且识别效率低下的情况,本文提出了一种基于MobileNetV3多尺度特征融合的人脸表情识别。首先利用MobileNetV3进行特征提取以获得高层次情感信息;其次在骨干网络中借鉴DenseNet结构,增强特征复用并提升网络重要面部特征表达能力;然后利用特征金字塔模块充分获取人脸图像的深层和浅层多尺度融合特征,从而提高了MobileNetV3的特征提取能力和实时性;最后利用全连接层构建分类器对表情进行分类,从而完成了人脸表情识别。通过实验验证,结果表明,在CK+和FERPlus数据集上识别准确率可以达到88.3%和98.8%,与现有方法相比分别提高了2.3%和1.5%,表明了所提方法识别效果好,泛化能力强。 展开更多
关键词 人脸表情识别 情感分析 mobilenetv3模型 特征金字塔 DenseNet结构
在线阅读 下载PDF
一种基于Mobilenetv3的行人检测算法研究 被引量:1
20
作者 马志钢 南新元 +1 位作者 高丙朋 李恒 《现代电子技术》 2023年第16期149-154,共6页
针对实时的行人检测算法要求模型具有轻量型和良好的鲁棒性,文中提出一种基于Mobilenetv3的行人检测算法。该算法首先采用Mobilenetv3作为模型的主干特征提取网络;然后通过深度可分离卷积替换PANet中的普通卷积,减少网络的复杂度;最后... 针对实时的行人检测算法要求模型具有轻量型和良好的鲁棒性,文中提出一种基于Mobilenetv3的行人检测算法。该算法首先采用Mobilenetv3作为模型的主干特征提取网络;然后通过深度可分离卷积替换PANet中的普通卷积,减少网络的复杂度;最后引入注意力机制SE和ECA关注网络中重要的通道信息,加强模型的特征融合能力。实验结果表明:与YOLOv4算法相比,基于Mobilenetv3的行人检测算法模型体积缩小78.03%,参数量也降低82.44%;且在实验数据集和INRIA数据集上,所提算法的平均精度(AP)分别提升3.98%和1.10%,检测速率分别提升8.08 f/s和7.89 f/s,检测时间也显著缩短,具有良好的检测性能。 展开更多
关键词 行人检测算法 mobilenetv3网络 YOLOv4算法 深度可分离卷积 注意力机制 检测性能
在线阅读 下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部