期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
基于改进MobileNet v3-small模型的苹果叶片病害识别方法 被引量:2
1
作者 王浩宇 胡玉荣 +3 位作者 崔艳荣 陈华锋 李素若 刘奕 《江苏农业科学》 北大核心 2025年第5期113-120,共8页
针对真实环境下苹果叶片病害识别背景复杂、识别准确率不高的现状,提出基于改进MobileNet v3-small模型的苹果叶片病害识别方法,根据苹果叶片病害特征,在模型主干网络前嵌入Inception v2模型,不仅可增强模型对特征的多尺度感知能力,还... 针对真实环境下苹果叶片病害识别背景复杂、识别准确率不高的现状,提出基于改进MobileNet v3-small模型的苹果叶片病害识别方法,根据苹果叶片病害特征,在模型主干网络前嵌入Inception v2模型,不仅可增强模型对特征的多尺度感知能力,还能使模型更好地捕捉到病害的细微差异,有助于提升特征的多样性;同时在池化层前引入通道混洗,将输入通道分成2个组进行混洗操作,便于通道之间的信息交互,使得模型对特征的整合能力有所提升,有助于提升模型对复杂背景下病害特征的识别效果。采用覆盖斑点落叶病、褐斑病、花叶病、灰斑病和锈病等5种常见病害的图像数据集进行试验。结果表明,改进的模型比原模型平均召回率提升1.98百分点,平均F1分数提升1.97百分点,Top-1准确率提升1.89百分点,平均精确率提升1.88百分点,而参数量仅为17.7 M,与其他经典网络模型相比,性能评估指标均有不同程度的提升。改进的模型可为真实场景下苹果叶片病害的识别提供一种新颖且有效的方法。 展开更多
关键词 苹果叶片病害 图像识别 mobilenet v3-small模型 通道混洗 Inception v2模型
在线阅读 下载PDF
基于多阶段特征融合的MobileNet v3-ULAM茶叶病害识别
2
作者 董虎胜 鲜学丰 +1 位作者 孙逊 杨元峰 《江苏农业科学》 北大核心 2025年第15期200-211,共12页
为了实现对茶园种植的智能化与精准化管理,针对自然场景下茶叶病害的快速与准确识别问题,提出了应用多阶段特征融合策略与ULAM超轻量注意力对MobileNet v3网络作改进的轻量级茶叶病害识别模型。该模型在MobileNet v3网络中新增了1个分支... 为了实现对茶园种植的智能化与精准化管理,针对自然场景下茶叶病害的快速与准确识别问题,提出了应用多阶段特征融合策略与ULAM超轻量注意力对MobileNet v3网络作改进的轻量级茶叶病害识别模型。该模型在MobileNet v3网络中新增了1个分支,对网络各中间阶段的特征作拼接与变换处理,然后与原主干网络提取的特征融合,实现对中间阶段特征的复用,有效增强特征的判别力。为了改进MobileNet v3网络中SE注意力对空间信息处理不足和运算量较大的问题,还设计了一款ULAM注意力模块;ULAM不仅实现了对空间与通道信息的协同处理,还借助转置卷积运算显著降低了运算量,在该注意力模块中只有54个需要学习的参数,具有极为轻量的优势。在CIFAR10通用图像分类任务上,改进后的模型达到94.18%的识别准确率,比原MobileNet v3提高4.13百分点,综合性能优于常见CNN模型。在自建的茶叶常见病害数据集上,直接使用原始数据训练本研究模型可达到95.46%的平均识别准确率,相较于MobileNet v3提升3.34百分点。进一步采用数据平衡处理后,模型平均识别精度提升至98.88%,能够准确地识别白星病、藻斑病、炭疽病等茶叶病害。本研究模型在参数量上比原始MobileNet v3进一步降低,因而适合在移动设备与农机等资源受限的场景中部署。 展开更多
关键词 茶叶病害识别 mobilenet v3 注意力机制 边缘计算 卷积神经网络
在线阅读 下载PDF
基于改进MobileNet v3的苹果叶片病害识别研究 被引量:1
3
作者 李豫晋 沈陆明 +2 位作者 何少芳 余文强 滕明洪 《江苏农业科学》 北大核心 2024年第12期224-231,共8页
为解决移动端和嵌入式设备中苹果叶片病害识别准确率不高、效率低下的问题,提出了一种新的基于MobileNet v3网络的分类模型,以实现更加高效和准确的苹果叶片病害识别。首先通过数据增广方法增强数据集,按照9∶1的比例划分训练集和验证集... 为解决移动端和嵌入式设备中苹果叶片病害识别准确率不高、效率低下的问题,提出了一种新的基于MobileNet v3网络的分类模型,以实现更加高效和准确的苹果叶片病害识别。首先通过数据增广方法增强数据集,按照9∶1的比例划分训练集和验证集;然后在MobileNet v3网络核心倒残差结构的升维部分引入全维动态卷积,以加强对不同维度注意力权重的学习,从而增强网络的拟合能力;最后在降维部分引入修改后的ConvNext Block模块,减少信息损失并增加全局感受野。采用PyTorch作为分类网络的深度学习框架,使用交叉熵损失函数作为分类任务的损失函数,Adam作为优化器,通过多组对比试验可知,MobileNet v1、MobileNet v2、ResNet34、MobileNet v3以及改进后的MobileNet v3 ODConvNext网络的准确率分别为94.5%、95.7%、97.2%、96.9%及97.5%。可见,MobileNet v3 ODConvNet网络拥有最高的Top-1准确率,相较于MobileNet v3网络和结构更为复杂的ResNet34网络分别提升了0.6、0.3百分点;在运算频率方面,相对于MobileNet v3网络仅增加了1.00×10^(6)次/s,并且仅为ResNet34网络参数量的11.84%。因此,该试验结果证明了改进后的MobileNet v3 ODConvNext模型具有更加轻量级和更高准确率的优点,满足在移动端真实场景下进行苹果叶片病害识别的要求,有助于苹果叶片病害的防治工作。 展开更多
关键词 苹果叶片 病害识别 mobilenet v3 全维动态卷积 ConvNext 深度学习
在线阅读 下载PDF
基于改进MobileNet v3-Small模型的草莓病害识别方法 被引量:4
4
作者 王晶 崔艳荣 《江苏农业科学》 北大核心 2024年第10期225-234,共10页
为了对草莓病害进行及时的诊断与治疗而提升草莓产量,将深度学习与农业生产结合以快速高效地进行病害检测。传统神经网络进行病害识别时间较长,参数量较大,难以迁移到移动端设备上,基于此提出一种改进MobileNet v3-Small模型的识别方法... 为了对草莓病害进行及时的诊断与治疗而提升草莓产量,将深度学习与农业生产结合以快速高效地进行病害检测。传统神经网络进行病害识别时间较长,参数量较大,难以迁移到移动端设备上,基于此提出一种改进MobileNet v3-Small模型的识别方法。首先收集了7类常见草莓病害图像样本(如角斑病、叶斑病等),通过旋转、镜像等多种数据增强方式对图像进行处理以增加图片数量,提高模型泛化能力。接着以MobileNet v3-Small模型为基础,基于原始Inception_A提出部分卷积权值共享的多尺度卷积结构,以更高效地提取草莓病害不同尺度特征。随后,在网络深层引入了ULSAM轻量级子注意力机制,形成草莓病害更高层次的抽象表示。同时,将深度可分离卷积中的第2个PW卷积替换为CondConv卷积形成PDC结构,克服了PW卷积只拥有局部感受野的缺陷,同时也降低了模型参数量。试验结果表明,改进后的MobileNet v3-Small模型准确率达到98.62%,较原模型94.91%的准确率提高了3.71百分点,并且参数量减少了0.04 M,远优于同级轻量化模型,且以远低于ResNet18的参数量取得更好的特征提取效果。综上所述,本研究所提出的改进后的MobileNet v3_Small模型能更好地在真实场景下进行草莓病害识别,为草莓生产贡献了一份力量,助力智慧农业发展。 展开更多
关键词 草莓病害 图像分类 mobilenet v3-Small Inception_A ULSAM轻量级子注意力机制 CondConv
在线阅读 下载PDF
基于改进MobileNet v3的苹果叶片病害识别方法及移动端应用 被引量:2
5
作者 张风伟 朱成杰 朱洪波 《江苏农业科学》 北大核心 2024年第7期205-213,共9页
准确识别苹果叶片病害种类以进行及时防治对于苹果增量增产具有重要的意义,为实现在移动设备实时对苹果叶片进行病害识别,提高苹果的产量,减少种植者的损失。首先收集了黑星病、斑点落叶病、锈病、白粉病、混合病、褐斑病等6种苹果叶部... 准确识别苹果叶片病害种类以进行及时防治对于苹果增量增产具有重要的意义,为实现在移动设备实时对苹果叶片进行病害识别,提高苹果的产量,减少种植者的损失。首先收集了黑星病、斑点落叶病、锈病、白粉病、混合病、褐斑病等6种苹果叶部病害和健康叶片的图像,并使用Retinex算法对图像进行数据增强,以提高数据集质量,然后将数据集按照8∶1∶1的比例划分为训练集、验证集和测试集;其次对MobileNet v3网络模型进行改进优化调整,在精简网络结构的同时减少冗余参数,并在非线性激活层后加入批归一化层,以提高网络的特征提取能力;同时,为了提升在低精度移动设备上的准确性和模型运行效率,将全连接层中的激活函数替换为ReLU6函数;最后,在模型训练时使用动量随机梯度下降优化器来进行模型权重系数的寻优,以减少训练时间和达到更高的分类准确率。试验结果表明,改进后的MobileNet v3-A3网络对苹果叶片病害图像的识别准确率为96.48%,模型权重为2.98 MB,识别速率为8.82 ms/幅图片,与其他同量级卷积神经网络相比识别精度更高、模型更小、识别速度更快。本研究使用Android Studio将权重模型封装到安卓软件中,实现了移动设备对苹果叶片病害的准确快速识别。 展开更多
关键词 苹果 叶部病害 图像识别 mobilenet v3 ANDROID
在线阅读 下载PDF
基于轻量级MobileNet V3-YOLOv4的生长期菠萝成熟度分析 被引量:7
6
作者 李阳德 马晓慧 王骥 《智慧农业(中英文)》 CSCD 2023年第2期35-44,共10页
[目的/意义]菠萝的贮藏性与成熟度相关,菠萝采摘前对其成熟度进行识别尤为重要。本研究目的在于提出一种新型网络模型,提高菠萝成熟度自动识别的准确率和速度。[方法]首先针对菠萝训练数据集样本少与实时性差等不足,利用在自然环境下拍... [目的/意义]菠萝的贮藏性与成熟度相关,菠萝采摘前对其成熟度进行识别尤为重要。本研究目的在于提出一种新型网络模型,提高菠萝成熟度自动识别的准确率和速度。[方法]首先针对菠萝训练数据集样本少与实时性差等不足,利用在自然环境下拍摄的菠萝照片,自建了种植区场景菠萝成熟度分析数据集。之后将YOLOv4骨干网络替换成轻量级网络MobileNet V3,提出了轻量级的MobileNet V3-YOLOv4网络。同时训练了原YOLOv4模型、MobileNet V1-YOLOv4模型、MobileNet V2-YOLOv4模型以及Faster R-CNN、YOLOv3、SSD300、Retinanet、Centernet等五种不同的单、双阶段网络模型,并对比模型的评价指标,分析本文模型的优越性。[结果和讨论]试验结果表明,MobileNet V3-YOLOv4训练时间为11,924 s,参数量为53.7 MB,训练好的MobileNet V3-YOLOv4在验证集的平均精度均值(mean Average Precision,mAP)为90.92%,对于黄熟期菠萝和青熟期菠萝两种类别的检测精确率(Precision)分别为100%和98.85%,平均精度(Average Precision,AP)值分别为87.62%、94.21%,召回率(Recall)分别为77.55%、86.00%,F_(1)分数(F_(1)Score)分别为0.87和0.92,推理速度(Frames Per Second,FPS)80.85 img/s。[结论]本研究提出的MobileNet V3-YOLOv4实现了在降低训练速度、减小参数量的同时,提高了菠萝成熟度识别的精度和推理速度,满足实际检测需求。 展开更多
关键词 菠萝成熟度 骨干网络 mobilenet v3-YOLOv4 Faster R-CNN SSD300 Retinanet Centernet 轻量级
在线阅读 下载PDF
基于改进MobileNet V3网络的桃子成熟度分级方法
7
作者 孔淳 陈诗瑶 +4 位作者 冯峰 陈维康 刘鹏 孙博 王志军 《山东农业科学》 北大核心 2024年第11期148-155,共8页
目前在我国桃业生产过程中主要采用基于主观经验的人工方式对桃子外观成熟度进行分级,该方式不仅效率较低,而且易受主观因素的影响,导致同一批次的桃子在成熟度等级上参差不齐,无法达到国际桃品销售中所要求的成熟度品级标准。针对上述... 目前在我国桃业生产过程中主要采用基于主观经验的人工方式对桃子外观成熟度进行分级,该方式不仅效率较低,而且易受主观因素的影响,导致同一批次的桃子在成熟度等级上参差不齐,无法达到国际桃品销售中所要求的成熟度品级标准。针对上述问题,本研究提出一种基于改进卷积神经网络MobileNet V3的桃子外观成熟度分级模型CS-MobileNet-P-L:首先,为了提升模型的特征提取能力,将多方位协调注意力机制模块引入原有注意力机制中,以构成双重注意力机制;其次,为提高模型的分级准确度,对网络Bneck结构中的激活函数进行调整并对模型的Last Stage结构进行优化改进。结果表明,当使用相同训练策略及环境配置时,改进后的CS-MobileNet-P-L模型的准确度比MobileNet V3模型提高了2.71个百分点,能较好地实现桃子外观成熟度的自动化精准分级。 展开更多
关键词 桃子 外观成熟度分级 卷积神经网络 mobilenet v3 注意力机制 激活函数
在线阅读 下载PDF
Real-Time Monitoring Method for Cow Rumination Behavior Based on Edge Computing and Improved MobileNet v3
8
作者 ZHANG Yu LI Xiangting +4 位作者 SUN Yalin XUE Aidi ZHANG Yi JIANG Hailong SHEN Weizheng 《智慧农业(中英文)》 CSCD 2024年第4期29-41,共13页
[Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been propo... [Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been proposed for monitoring cow ruminant behavior,including video surveillance,sound recognition,and sensor monitoring methods.How‐ever,the application of edge device gives rise to the issue of inadequate real-time performance.To reduce the volume of data transmission and cloud computing workload while achieving real-time monitoring of dairy cow rumination behavior,a real-time monitoring method was proposed for cow ruminant behavior based on edge computing.[Methods]Autono‐mously designed edge devices were utilized to collect and process six-axis acceleration signals from cows in real-time.Based on these six-axis data,two distinct strategies,federated edge intelligence and split edge intelligence,were investigat‐ed for the real-time recognition of cow ruminant behavior.Focused on the real-time recognition method for cow ruminant behavior leveraging federated edge intelligence,the CA-MobileNet v3 network was proposed by enhancing the MobileNet v3 network with a collaborative attention mechanism.Additionally,a federated edge intelligence model was designed uti‐lizing the CA-MobileNet v3 network and the FedAvg federated aggregation algorithm.In the study on split edge intelli‐gence,a split edge intelligence model named MobileNet-LSTM was designed by integrating the MobileNet v3 network with a fusion collaborative attention mechanism and the Bi-LSTM network.[Results and Discussions]Through compara‐tive experiments with MobileNet v3 and MobileNet-LSTM,the federated edge intelligence model based on CA-Mo‐bileNet v3 achieved an average Precision rate,Recall rate,F1-Score,Specificity,and Accuracy of 97.1%,97.9%,97.5%,98.3%,and 98.2%,respectively,yielding the best recognition performance.[Conclusions]It is provided a real-time and effective method for monitoring cow ruminant behavior,and the proposed federated edge intelligence model can be ap‐plied in practical settings. 展开更多
关键词 cow rumination behavior real-time monitoring edge computing improved mobilenet v3 edge intelligence model Bi-LSTM
在线阅读 下载PDF
基于改进轻量级MobileNet V2-DeepLab V3^(+)模型的恐龙谷环状地区土地利用分类
9
作者 任聪 甘淑 +2 位作者 袁希平 罗为东 朱智富 《兰州大学学报(自然科学版)》 北大核心 2025年第4期436-441,共6页
针对传统卷积神经网络模型对全局特征捕捉不足的缺陷,提出一种基于改进的DeepLab V3^(+)全局通道空间注意力模型.通过处理无人机影像数据,以轻量级网络MobileNet V2为主干网络,结合通道注意力、通道洗牌和空间注意力机制,增强了特征的... 针对传统卷积神经网络模型对全局特征捕捉不足的缺陷,提出一种基于改进的DeepLab V3^(+)全局通道空间注意力模型.通过处理无人机影像数据,以轻量级网络MobileNet V2为主干网络,结合通道注意力、通道洗牌和空间注意力机制,增强了特征的全局特征捕捉能力,有效提升了研究区的土地利用分类精度.在以专家经验构建的道路、耕地、草地等样本中进行对比实验,结果表明,该方法的平均准确率、平均召回率、平均F_(1)分数、平均交并比及К系数比原始DeepLab V3^(+)模型分别提高了1.90%、2.22%、2.22%、3.37%、2.74%,其分割效果相比其他模型,更加关注图像的全局特征,提升了对复杂纹理类别的识别精度. 展开更多
关键词 全局通道空间注意力 mobilenet V2网络 DeepLab v3^(+)模型 土地利用 语义分割
在线阅读 下载PDF
基于红外图像和改进MobileNet-V3的光伏组件故障诊断方法 被引量:21
10
作者 任惠 夏静 +2 位作者 卢锦玲 王允哲 辛国雨 《太阳能学报》 EI CAS CSCD 北大核心 2023年第8期238-245,共8页
为了提高光伏系统的可靠性和性能,提出一种基于红外图像和改进MobileNet-V3的光伏组件故障诊断方法。首先,分析开源光伏组件缺陷图像及其存在的问题;然后,基于存在的问题,对光伏组件红外缺陷图像进行图像增强、数据增强处理,使红外图像... 为了提高光伏系统的可靠性和性能,提出一种基于红外图像和改进MobileNet-V3的光伏组件故障诊断方法。首先,分析开源光伏组件缺陷图像及其存在的问题;然后,基于存在的问题,对光伏组件红外缺陷图像进行图像增强、数据增强处理,使红外图像满足图片可用性及样本数量丰富性的要求;最后,对基本MobileNet-V3网络进行改进,实现光伏组件故障分类。实验结果显示:与传统CNN、基础MobileNet-V3相比,所提故障分类方法不仅准确率高、诊断速度快,且对各种故障类别的识别率高,具有较好的实用性和应用价值。 展开更多
关键词 光伏组件 红外成像 图像增强 故障诊断 改进mobilenet-v3算法
在线阅读 下载PDF
改进YOLOv8n的复杂环境下垃圾轻量化检测
11
作者 孙世政 何玲玲 +1 位作者 郑帅 何泽银 《光学精密工程》 北大核心 2025年第12期1984-1998,共15页
针对复杂环境下垃圾检测模型参数量大以及存在误检和漏检等问题,本文提出了基于改进YOLOv8n的轻量化垃圾检测模型。首先,提出一种MobileNet V3_ECA轻量级网络结构作为YOLOv8n的骨干网络,提升模型对垃圾特征区域的表达能力,同时减少模型... 针对复杂环境下垃圾检测模型参数量大以及存在误检和漏检等问题,本文提出了基于改进YOLOv8n的轻量化垃圾检测模型。首先,提出一种MobileNet V3_ECA轻量级网络结构作为YOLOv8n的骨干网络,提升模型对垃圾特征区域的表达能力,同时减少模型参数量;其次,在骨干网络引入上下文锚点注意力机制,增强模型对垃圾特征的提取能力;然后,在颈部网络采用全维动态卷积替换标准卷积,细化局部特征映射,实现垃圾局部细粒度特征的融合能力;最后,采用WIoU v3边界损失函数提升网络边界框回归性能。在自建复杂背景下的垃圾数据集进行模型验证实验,改进后模型相比原YOLOv8n,mAP@0.5提升了1.1%,检测速度FPS提高11.7%,参数量Params、模型大小Size和浮点运算量FLOPs分别降低了70.8%,66.1%和70.7%。实验结果表明,本文改进模型能有效提升检测精度并显著降低模型复杂度,对模型部署与应用至边缘端检测装备具有重要的工程意义。 展开更多
关键词 垃圾检测 轻量化 mobilenet v3_ECA YOLOv8n 深度学习
在线阅读 下载PDF
应用MCCW-YOLOv7-tiny研究轻量级玉米田间杂草识别算法 被引量:1
12
作者 王希如 贾仁山 +4 位作者 曹玉莹 刘银川 高新悦 吴佳鑫 贾银江 《东北农业大学学报》 北大核心 2025年第1期124-138,共15页
针对玉米田间杂草传统目标检测模型存在体积大、实时性差、精准度低、移动端部署难等问题,提出了改进的轻量级目标检测算法MCCW-YOLOv7-tiny。通过将YOLOv7-tiny主干网络CSPDarknet替换为MobileNet V3模块,降低模型冗余和参数量,满足实... 针对玉米田间杂草传统目标检测模型存在体积大、实时性差、精准度低、移动端部署难等问题,提出了改进的轻量级目标检测算法MCCW-YOLOv7-tiny。通过将YOLOv7-tiny主干网络CSPDarknet替换为MobileNet V3模块,降低模型冗余和参数量,满足实时性要求。添加并行网络至主干网络,并在检测头部引入CBAM注意力机制,增强对小目标的关注,提高整体识别精度。损失函数改进为WIoUv3,以动态平衡样本质量,提升模型泛化能力。结果表明:MCCW-YOLOv7-tiny较YOLOv7-tiny,mAP从93.7%提升至95.3%,计算复杂度从13.3 GFLOPs降至6.2 GFLOPs,模型参数量为3.71 M,为复杂环境下的玉米田间杂草检测提供有效技术支持。 展开更多
关键词 YOLOv7-tiny mobilenet v3 CBAM注意力机制 WIoUv3 玉米 杂草识别
在线阅读 下载PDF
基于改进YOLOv4的水稻病害快速检测方法 被引量:9
13
作者 严陈慧子 田芳明 +2 位作者 谭峰 王思琪 石景秀 《江苏农业科学》 北大核心 2023年第6期187-194,共8页
针对水稻图像中复杂背景带来的病斑难以识别、检测速度慢等问题,以水稻稻瘟病、白叶枯病和胡麻斑病图像为研究对象,提出一种基于改进YOLOv4的水稻病害检测方法,该方法以YOLOv4模型为主体框架,采用轻量级网络MobileNet V3代替原始主干网... 针对水稻图像中复杂背景带来的病斑难以识别、检测速度慢等问题,以水稻稻瘟病、白叶枯病和胡麻斑病图像为研究对象,提出一种基于改进YOLOv4的水稻病害检测方法,该方法以YOLOv4模型为主体框架,采用轻量级网络MobileNet V3代替原始主干网络CSPDarkNet-53,并通过在颈部网络添加坐标注意力模块(coordinate attention module,CAM)来提高模型的性能。结果表明,改进后的模型对水稻稻瘟病、白叶枯病、胡麻斑病的识别准确率均有所提升,平均精度均值(mean average precision,mAP)为85.34%,与原始YOLOv4模型相比,mAP提高了1.32%,每秒钟检测图像的帧数(frames per second,FPS)为53.43帧/s,检测速度提高了49.62%,说明研究得出的方法具有较高的平均准确率及较快的检测速度,能够用于田间复杂环境下的水稻病害快速识别。 展开更多
关键词 水稻病害 目标检测 YOLOv4 mobilenet v3 坐标注意力
在线阅读 下载PDF
基于轻量化卷积神经网络的番茄叶片病害识别 被引量:6
14
作者 郑超杰 李少波 +1 位作者 蒲睿强 张涛 《江苏农业科学》 北大核心 2024年第11期225-231,共7页
传统的卷积神经网络在番茄叶部病害识别中存在结构复杂、参数庞大等问题,导致难以在移动设备上实现良好的应用效果。因此,提出一种基于轻量化卷积神经网络的番茄叶片病害识别方法。首先,将番茄叶片病害图片进行数据增强扩充,保证数据分... 传统的卷积神经网络在番茄叶部病害识别中存在结构复杂、参数庞大等问题,导致难以在移动设备上实现良好的应用效果。因此,提出一种基于轻量化卷积神经网络的番茄叶片病害识别方法。首先,将番茄叶片病害图片进行数据增强扩充,保证数据分布均匀;其次,绘制MobileNet v3模型基于扩充数据集tomato2的敏感度分析曲线图,根据敏感度分析曲线图对模型的输出通道数进行裁剪,构建轻量化卷积神经网络模型MobileNet v3-Prune;最后,运用4种卷积神经网络及其对应的轻量化模型对番茄叶片病害图片训练进行试验对比。结果表明,MobileNet v3-Prune对番茄叶片病害识别性能最佳,在测试集上的平均识别准确率达到了99.60%,模型权重仅为3.69 MB,单张图片识别时间为12.13 ms。本研究结果可以为移动设备上的番茄叶片病害识别应用的实现提供理论支持。 展开更多
关键词 番茄叶片病害 数据增强 mobilenet v3 敏感度分析 轻量化模型
在线阅读 下载PDF
基于轻量化卷积神经网络的多肉植物种类识别研究 被引量:2
15
作者 孙公凌云 张靖渝 +7 位作者 连俊博 宁景苑 刘伟立 刘权 王国振 陆诗怡 时鹏辉 楼雄伟 《传感技术学报》 CAS CSCD 北大核心 2023年第12期1916-1927,共12页
目前多肉植物产业在我国发展较快,市场前景广阔,由于其具有品种繁多、形态多变、类间相似度高等特点,导致多肉植物种类辨别难度较大。针对上述问题,提出一种基于改进MobileNet V3网络与迁移学习的多肉植物图像分类方法,将Bottleneck模... 目前多肉植物产业在我国发展较快,市场前景广阔,由于其具有品种繁多、形态多变、类间相似度高等特点,导致多肉植物种类辨别难度较大。针对上述问题,提出一种基于改进MobileNet V3网络与迁移学习的多肉植物图像分类方法,将Bottleneck模块前六层的ReLU激活函数换成LeakyReLU激活函数,优化了SE模块,添加了Dropout层提高模型的泛化性。通过改进MobileNet V3网络对13种多肉植物图像进行种类识别,准确率为97.35%,并且可以实时稳定地对多肉植物图像进行分类,使用Focal Loss代替交叉熵损失函数,达到平衡样本的目的。研究结果表明,利用改进MobileNet V3网络对多肉植物种类识别具有一定可行性。 展开更多
关键词 图像分类 多肉植物图像 深度学习 迁移学习 mobilenet v3 Focal Loss DROPOUT LeakyReLU
在线阅读 下载PDF
基于改进YOLOv8的田间复杂环境下蓝莓成熟度检测 被引量:16
16
作者 田有文 覃上声 +2 位作者 闫玉博 王佳晖 姜凤利 《农业工程学报》 EI CAS CSCD 北大核心 2024年第16期153-162,共10页
为了快速精确识别田间复杂环境下的蓝莓果实的成熟度,该研究基于YOLOv8提出了一种蓝莓成熟度轻量化检测模型(MSC-YOLOv8)。首先,为了有效减少参数量,提高模型的运行速度,采用MobileNetV3为主干特征提取网络进行特征信息的提取,有利于田... 为了快速精确识别田间复杂环境下的蓝莓果实的成熟度,该研究基于YOLOv8提出了一种蓝莓成熟度轻量化检测模型(MSC-YOLOv8)。首先,为了有效减少参数量,提高模型的运行速度,采用MobileNetV3为主干特征提取网络进行特征信息的提取,有利于田间复杂环境下的检测。其次,在主干特征提取网络中插入卷积注意力机制模块(convolutional block attention module,CBAM),以提高深度学习网络对蓝莓特征提取的能力。最后,引入SCYLLAIoU(SIoU)作为YOLOv8的边界框回归损失函数,以解决真实框与预测框角度不匹配的问题,进一步提高蓝莓成熟度识别的准确率。通过试验得出改进的MSC-YOLOv8模型相较于YOLOv8平均精度均值(mean average precision,mAP)提升了3.9个百分点,单张图片平均检测时间比原YOLOv8减少了3.97 ms。改进的MSC-YOLOv8模型在蓝莓数据集上取得了较优的结果,与SSD和CenterNet模型对比,mAP分别提升了4.6和1.1个百分点,在检测速度和准确率方面均有优势。该研究可为田间复杂环境下蓝莓机器人采摘提供技术支持。 展开更多
关键词 蓝莓 YOLOv8 mobilenetv3 CBAM 成熟度 损失函数
在线阅读 下载PDF
基于改进SSD和Jetson Nano的口罩佩戴检测门禁系统 被引量:11
17
作者 毛晓波 徐向阳 +4 位作者 李楠 魏刘倩 刘玉玺 董梦超 焦淼鑫 《郑州大学学报(工学版)》 CAS 北大核心 2021年第6期85-92,共8页
为了减少疫情期间人们未佩戴口罩造成的交叉感染概率,设计一款基于改进的SSD和Jetson Nano的口罩佩戴检测门禁系统,以快速检测进出口行人是否佩戴口罩,控制闸机的开合。首先,从MAFA和WIDER FACE这2个数据集中抽取适合用于该系统的训练图... 为了减少疫情期间人们未佩戴口罩造成的交叉感染概率,设计一款基于改进的SSD和Jetson Nano的口罩佩戴检测门禁系统,以快速检测进出口行人是否佩戴口罩,控制闸机的开合。首先,从MAFA和WIDER FACE这2个数据集中抽取适合用于该系统的训练图片,其中6000张作为训练集,2000张作为测试集;其次,利用随机色相、饱和度等像素级变换和随机扩展、随机裁剪等几何级变换,对数据集中的小目标进行数据增强,使数据集更加多样,增强该检测网络的泛化能力;再次,将原始SSD的VGG特征提取网络替换为MobileNet-V3,利用其深度可分离卷积的速度优势,以及计算量较小的H-Swish激活函数、轻量化的注意力机制等优化策略,加速检测、提高精度;最后,将该检测网络移植到计算能力有限的人工智能边缘计算设备Jetson Nano上,加装高清显示器,并设计可折叠的平行四边形挡板,选择合适的外围设备,构成了一个具有防疫价值的快速检测公共场所进出口行人是否佩戴口罩的多功能门禁系统。在该嵌入式设备上的测试结果表明:以MobilNet-V3为特征提取网络的目标检测算法SSD,取得了78%的MAP,FPS为12,与以VGG为特征提取网络的原始SSD算法(FPS为2)相比,检测速度是原始SSD算法的6倍。该系统在保证实时性的同时也兼顾了检测精度,达到了精度和速度的平衡。 展开更多
关键词 口罩佩戴检测 门禁系统 目标检测SSD Jetson Nano mobilenet-v3
在线阅读 下载PDF
多模式特征融合网络肺结节良恶性分类方法 被引量:4
18
作者 尹智贤 夏克文 武盼盼 《计算机工程与应用》 CSCD 北大核心 2023年第23期228-236,共9页
胸部计算机断层扫描(computed tomography,CT)中肺结节良恶性的精确分类对于肺癌的早期诊断具有重要意义。然而,CT影像中肺结节背景的复杂,以及图像特征提取不全面等问题,为实现肺结节良恶性的精确分类带来困扰。为此,提出了多模式特征... 胸部计算机断层扫描(computed tomography,CT)中肺结节良恶性的精确分类对于肺癌的早期诊断具有重要意义。然而,CT影像中肺结节背景的复杂,以及图像特征提取不全面等问题,为实现肺结节良恶性的精确分类带来困扰。为此,提出了多模式特征融合网络肺结节良恶性分类方法。具体地,以MobileNet V3为骨干网络,以原始肺结节CT图像及提取出的结节图像为输入,设计了一种双路径特征提取网络,不仅能够有效提取原CT图像的全局信息,还能有效挖掘肺结节区域的判别性特征,以弥补结节较小时网络过多关注其周围组织从而产生误判的问题。此外,在特征提取阶段引入convolutional block attention module(CBAM)和通道混洗机制,进一步增强了网络的特征表达能力。同时,对原MobileNet V3网络结构做出修改,删除最后四组基于倒残差结构的bottlenecks(bnecks)模块,使模型能够以较小的时间和空间复杂度精确诊断恶性结节。在LIDC-IDRI数据集上的实验表明,提出的方法能够在显著降低网络参数量和FLOPs的同时实现对肺结节良恶性的精确分类,分类准确率、敏感性、特异性、精确率、F1值和AUC值分别达到了93.71%、94.03%、93.48%、95.56%、92.65%和98.66%。 展开更多
关键词 肺结节良恶性分类 特征融合 卷积块注意力模块(CBAM) 通道混洗 mobilenet v3
在线阅读 下载PDF
基于深度学习的轻量化农作物叶片病害识别模型 被引量:1
19
作者 周江龙 王天一 +1 位作者 李论 蒋宁 《江苏农业科学》 北大核心 2024年第16期230-238,共9页
针对传统图像分类模型在识别农作物叶部病害过程中因计算资源消耗高昂从而难以部署于实际生产中的问题,本研究提出一种基于MobileNet v3的轻量化农作物叶片病害识别模型EDCA-MobileNet v3。首先在高效注意力机制中加入一条并行路径,提... 针对传统图像分类模型在识别农作物叶部病害过程中因计算资源消耗高昂从而难以部署于实际生产中的问题,本研究提出一种基于MobileNet v3的轻量化农作物叶片病害识别模型EDCA-MobileNet v3。首先在高效注意力机制中加入一条并行路径,提取不同区域的通道特征信息进行编码融合,得到新的高效双通道注意力机制EDCA,将EDCA注意力机制嵌入到MobileNet v3网络中的倒置残差结构中以提高模型的跨通道信息捕获能力;其次将原始网络中的ReLU、Hard Swish激活函数替换为SiLU激活函数以增强模型的泛化能力;最后根据农作物叶片病害特征调整网络结构和通道维度以降低模型计算量,删减不必要的网络层以抑制过拟合。结果表明,改进模型对农作物叶片病害的识别准确率达到了98.95%,较原始模型提高了2.64百分点,同时参数量下降到2.02 M,为原始模型的79.53%,权重大小仅有4.39 M,模型还在未出现过的新作物和新病害上具有较好的泛化能力。本研究模型具有高效、轻量的特点,因而适合在计算资源有限的移动设备和农机上部署,为农作物叶片病害防治与诊断提供技术支撑。 展开更多
关键词 农作物叶片病害 mobilenet v3 注意力机制 激活函数
在线阅读 下载PDF
基于轻量级CNN的植物病害识别方法及移动端应用 被引量:85
20
作者 刘洋 冯全 王书志 《农业工程学报》 EI CAS CSCD 北大核心 2019年第17期194-204,共11页
为了实现在手机端植物病害叶片检测,对MobileNet和Inception V3 2种轻量级卷积神经网络进行迁移学习,得到2种作物病害分类模型,将2种分类模型分别移植到Android手机端,在识别精度、运算速度和网络尺寸之间进行平衡,选择最优模型。试验表... 为了实现在手机端植物病害叶片检测,对MobileNet和Inception V3 2种轻量级卷积神经网络进行迁移学习,得到2种作物病害分类模型,将2种分类模型分别移植到Android手机端,在识别精度、运算速度和网络尺寸之间进行平衡,选择最优模型。试验表明,MobileNet和Inception V3在PlantVillage数据集(共38类26种病害)上平均识别率分别是95.02%和95.62%。在自建图像集葡萄病害叶片的识别中MobileNet和Inception V3平均识别率分别是87.50%、88.06%,Inception V3的整体识别精度略高,但MobileNet在所有类别的识别上均衡性更好;在模型尺寸方面Inception V3的模型尺寸大小为87.5 MB,MobileNet的模型尺寸为17.1 MB,大约是后者5倍;2种模型移植到手机端时,MobileNet和Inception V3的APP所占内存分别是21.5和125 MB;在手机端单张图片的识别时间方面,Inception V3平均计算时间约是174 ms,MobileNet的平均计算时间约是134 ms,后者的平均计算时间比前者快40 ms;在手机端MobileNet相比于Inception V3占用内存更小,运算时间更快。说明MobileNet更适合在手机端进行植物病害识别应用。 展开更多
关键词 植物 病害 图像识别 mobilenet Inceptionv3 ANDROID
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部