期刊文献+
共找到28篇文章
< 1 2 >
每页显示 20 50 100
基于OpenMV模组和MobileNet V2模型的葡萄图像识别
1
作者 戈秀龙 戴文华 +2 位作者 李积武 赵云 沈佳健 《农机化研究》 北大核心 2025年第10期259-267,共9页
为了提高葡萄种植棚内葡萄自动采摘的准确度和效率,在葡萄的图像识别中必须依靠性能优越的嵌入式计算机和轻量级低延迟的神经网络模型。为此,基于OpenMV4 H7 Plus和OpenMV IDE开发环境,在葡萄种植棚中现场采集葡萄图片,利用PyCharm的Pyt... 为了提高葡萄种植棚内葡萄自动采摘的准确度和效率,在葡萄的图像识别中必须依靠性能优越的嵌入式计算机和轻量级低延迟的神经网络模型。为此,基于OpenMV4 H7 Plus和OpenMV IDE开发环境,在葡萄种植棚中现场采集葡萄图片,利用PyCharm的Python编程,经过旋转、平移、缩放和噪声添加等操作后形成扩展的深度学习葡萄图像数据集;应用Edge Impulse搭建模型规模小、检测速度快的MobileNet V2神经网络,以像素96×96作为输入并采用迁移学习的方式训练,得到反映模型质量的Epoch Loss、Train Loss、Recall和F 1 Score等指标,显示在经过一定的学习循环后Epoch Loss、Train Loss均收敛到较小值且Recall和F 1 Score逐步趋于稳定,其验证集准确度为92.4%;同时,搭建了一个试验装置,将所得模型部署到OpenMV4 H7 Plus模块,模拟试验摄像头相对葡萄横向移动时的识别效果。研究结果表明:配置了神经网络学习算法的OpenMV4 H7 Plus模块对葡萄识别准确度较高且识别速度较快,具有一定的应用价值。 展开更多
关键词 葡萄图像识别 机器视觉 神经网络 OpenMV4 H7 Plus mobilenet v2
在线阅读 下载PDF
基于改进轻量级MobileNet V2-DeepLab V3^(+)模型的恐龙谷环状地区土地利用分类
2
作者 任聪 甘淑 +2 位作者 袁希平 罗为东 朱智富 《兰州大学学报(自然科学版)》 北大核心 2025年第4期436-441,共6页
针对传统卷积神经网络模型对全局特征捕捉不足的缺陷,提出一种基于改进的DeepLab V3^(+)全局通道空间注意力模型.通过处理无人机影像数据,以轻量级网络MobileNet V2为主干网络,结合通道注意力、通道洗牌和空间注意力机制,增强了特征的... 针对传统卷积神经网络模型对全局特征捕捉不足的缺陷,提出一种基于改进的DeepLab V3^(+)全局通道空间注意力模型.通过处理无人机影像数据,以轻量级网络MobileNet V2为主干网络,结合通道注意力、通道洗牌和空间注意力机制,增强了特征的全局特征捕捉能力,有效提升了研究区的土地利用分类精度.在以专家经验构建的道路、耕地、草地等样本中进行对比实验,结果表明,该方法的平均准确率、平均召回率、平均F_(1)分数、平均交并比及К系数比原始DeepLab V3^(+)模型分别提高了1.90%、2.22%、2.22%、3.37%、2.74%,其分割效果相比其他模型,更加关注图像的全局特征,提升了对复杂纹理类别的识别精度. 展开更多
关键词 全局通道空间注意力 mobilenet v2网络 DeepLab V3^(+)模型 土地利用 语义分割
在线阅读 下载PDF
基于改进MobileNet v2的服装图像分类算法 被引量:6
3
作者 李林红 杨杰 +1 位作者 蒋严宣 朱浩 《现代纺织技术》 北大核心 2024年第4期93-103,共11页
针对现有服装图像分类算法参数量较多、识别精度低的问题,提出了一种基于注意力机制和迁移学习的改进型MobileNet v2算法。首先,选取MobileNet v2作为特征提取网络,确保服装分类算法的整体轻量性。其次,将通道与空间注意力机制嵌入特征... 针对现有服装图像分类算法参数量较多、识别精度低的问题,提出了一种基于注意力机制和迁移学习的改进型MobileNet v2算法。首先,选取MobileNet v2作为特征提取网络,确保服装分类算法的整体轻量性。其次,将通道与空间注意力机制嵌入特征提取单元,自适应地选择和强化有用的特征信息,从而提高服装图像分类算法的识别精度。最后,通过迁移学习方法对模型进行参数初始化,使得模型能够从源域中获得先验知识。在Fashion MNIST数据集上的实验结果表明:所提算法的分类精度为93.28%,相较于ResNet50、EfficientNet v2_l、ShuffleNet v2和MobileNet v2模型,分别提高了1.85%、1.34%、3.86%和3.17%;在DeepFashion数据集上的准确率为88.24%。此外,该算法参数量低至2.35M,单张图像推理速度仅为7.5 ms,在参数量基本不变的的情况下提升了分类精度与推理速度。 展开更多
关键词 服装分类 mobilenet v2 深度学习 注意力机制 迁移学习
在线阅读 下载PDF
基于轻量级网络MobileNet V2的二极管玻壳缺陷识别 被引量:7
4
作者 哈马友吉 任万春 +1 位作者 张秤 张华 《传感器与微系统》 CSCD 北大核心 2022年第4期153-155,160,共4页
针对目前二极管玻壳缺陷检测中存在的自动化程度低、效率低、错误率高和成本高等问题,提出了一种基于MobileNet V2卷积神经网络模型的图像识别算法,实现对二极管玻壳缺陷的准确识别。实验结果表明:该模型能够准确识别二极管玻壳缺陷,网... 针对目前二极管玻壳缺陷检测中存在的自动化程度低、效率低、错误率高和成本高等问题,提出了一种基于MobileNet V2卷积神经网络模型的图像识别算法,实现对二极管玻壳缺陷的准确识别。实验结果表明:该模型能够准确识别二极管玻壳缺陷,网络模型收敛后对玻壳缺陷的总体识别准确率达到93.3%,同时具备了检测速度快(图像识别速度不小于5张/s),模型体量小(不大于26.8 M)等特点,具有一定的实际工业应用价值。 展开更多
关键词 玻壳 卷积神经网络 缺陷识别 mobilenet v2网络
在线阅读 下载PDF
基于MobileNet V2和迁移学习的番茄病害识别 被引量:9
5
作者 王哲豪 范丽丽 何前 《江苏农业科学》 北大核心 2023年第9期215-221,共7页
番茄叶部病害严重影响了番茄的产量和质量,为实现在移动设备实时对番茄进行病害识别,提高番茄的产量,减少种植者的损失。本研究提出将轻量级网络模型MobileNet V2和迁移学习的方式相结合,对番茄早疫病、番茄细菌性斑疹病、番茄晚疫病、... 番茄叶部病害严重影响了番茄的产量和质量,为实现在移动设备实时对番茄进行病害识别,提高番茄的产量,减少种植者的损失。本研究提出将轻量级网络模型MobileNet V2和迁移学习的方式相结合,对番茄早疫病、番茄细菌性斑疹病、番茄晚疫病、番茄叶霉病、番茄斑枯病、番茄红蜘蛛病、番茄褐斑病、番茄花叶病、番茄黄化曲叶病等9种叶部病害图像以及健康番茄叶片图像进行分类识别,首先将数据集按照9∶1的比例分为训练集和验证集,对于训练模型根据迁移学习的方式分别采用不冻结卷积层、冻结部分卷积层、全部冻结卷积层的方式获得3种模型,然后在模型最后加上2层全连接层并用Dropout层防止过拟合,接着通过Softmax层输出实现对番茄病害图像分类识别,最后利用验证集来统计模型的准确率和损失值。其中,冻结部分卷积层准确率最高,达到93.67%。另外,通过试验对比传统网络VGG16、ResNet50训练集和验证集的准确率、损失值及运行时间,其中迁移学习的MobileNet V2模型的准确率最高,运行时间最短。该研究提出的基于MobileNet V2和迁移学习的番茄病害识别研究方法识别效果较佳,速度较快,为在移动设备实时对番茄病害识别提供了技术支持。 展开更多
关键词 mobilenet v2 迁移学习 病害识别 番茄
在线阅读 下载PDF
基于改进MobileNet v2的垃圾图像分类算法 被引量:53
6
作者 陈智超 焦海宁 +1 位作者 杨杰 曾华福 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2021年第8期1490-1499,共10页
针对现有的垃圾图像分类模型实时性能差和分类精度低的问题,提出基于改进MobileNet v2的垃圾图像分类方法,构建以MobileNet v2为核心的轻量级特征提取网络.通过调整宽度因子降低模型的参数量;在模型中嵌入通道和空间注意力模块,增强网... 针对现有的垃圾图像分类模型实时性能差和分类精度低的问题,提出基于改进MobileNet v2的垃圾图像分类方法,构建以MobileNet v2为核心的轻量级特征提取网络.通过调整宽度因子降低模型的参数量;在模型中嵌入通道和空间注意力模块,增强网络对特征的细化能力;设计多尺度特征融合结构,增强网络对尺度的适应性;利用迁移学习的方式优化模型参数,进一步提高模型精度.实验结果表明,算法在自建数据集上的平均准确率为94.6%,分别高于MobileNet v2、VGG16、GoogleNet、ResNet50、ResNet101模型2.0%、3.4%、3.2%、2.3%、1.2%;所提算法在2种公共图像分类数据集CIFAR-100和tiny-ImageNet中均取得不错表现;模型参数量仅为0.83 M,体积约为基础模型的2/5,在边缘设备JETSON TX2上的单次推理耗时68 ms,实现了推理速度和预测准确率的提升. 展开更多
关键词 垃圾图像分类 mobilenet v2 注意力机制 多尺度特征融合 迁移学习
在线阅读 下载PDF
融合U-Net及MobileNet-V2的快速语义分割网络 被引量:7
7
作者 兰天翔 向子彧 +1 位作者 刘名果 陈凯 《计算机工程与应用》 CSCD 北大核心 2021年第17期175-180,共6页
传统U-Net网络模型大,处理图片速度慢,难以适应工业生产中实时的需求。针对该问题,设计并实现了一个轻量级全卷积语义分割网络LU-Net。LU-Net网络以U-Net框架为主体,结合MobileNet-V2的思想,利用深度可分离卷积参数少、计算量小的特点... 传统U-Net网络模型大,处理图片速度慢,难以适应工业生产中实时的需求。针对该问题,设计并实现了一个轻量级全卷积语义分割网络LU-Net。LU-Net网络以U-Net框架为主体,结合MobileNet-V2的思想,利用深度可分离卷积参数少、计算量小的特点轻量化网络模型。网络综合利用bottleneck模块与普通卷积的优点,并高效利用了高层特征,在保持精度的同时,大幅缩短了分割所需时间。经公开数据集DRIVE及自制凹陷字符数据集上实验的验证,相较于原U-Net网络模型,提出的LU-Net模型参数量缩小至0.59×10^(6),为原模型的1.9%,运行速度提高5倍,处理一张360×270图片的平均耗时为25 ms。LU-Net基本满足工业生产对图像实时处理的要求。 展开更多
关键词 U-Net 语义分割 mobilenet-v2 深度可分离卷积
在线阅读 下载PDF
基于改进轻量级深度卷积神经网络的果树叶片分类及病害识别模型设计 被引量:3
8
作者 买买提·沙吾提 李荣鹏 +2 位作者 蔡和兵 赵明 梁嘉曦 《森林工程》 北大核心 2025年第2期277-287,共11页
新疆是中国重要的林果产业基地,特色林果业是区域经济发展的重要组成部分。为预防果树病害制约林果业发展,设计一款归一化注意力(normalization-based attention module,NAM)轻量级深度卷积神经网络(MobileNet-V2)果树叶片分类及病害识... 新疆是中国重要的林果产业基地,特色林果业是区域经济发展的重要组成部分。为预防果树病害制约林果业发展,设计一款归一化注意力(normalization-based attention module,NAM)轻量级深度卷积神经网络(MobileNet-V2)果树叶片分类及病害识别模型。其中融入轻量型的归一化注意力机制,提高模型对特征信息的敏感度,使模型关注显著性特征。同时,将L1正则化(L1 regularization或losso)添加到损失函数中,对权重进行稀疏性惩罚,抑制非显著性权重。试验结果表明,在叶片分类中,模型对自构建植物叶片病害识别数据集(Plant Village)、混合数据集的分类结果均表现良好,准确率分别达到97.05%、98.73%、94.91%,具有较好的泛化能力。在病害识别中,MobileNet-V2 NAM模型实现94.55%的识别准确率,高于深度卷积神经网络(AlexNet)、视觉几何群网络(VGG16)经典卷积神经网络(Convolutional Neural Networks,CNN)模型,且模型参数量只有3.56 M。MobileNet-V2 NAM在具有良好准确率同时保持了较低的模型参数量,为深度学习模型嵌入到移动设备提供技术支持。 展开更多
关键词 新疆 果树分类 病害识别 归一化注意力轻量级深度卷积神经网络(mobilenet-v2 NAM) 归一化注意力机制
在线阅读 下载PDF
基于T-MobileNet-L模型的GIS局部放电模式识别研究 被引量:15
9
作者 程江洲 温静怡 +2 位作者 鲍刚 何艳 陈奕睿 《电子测量技术》 北大核心 2021年第20期22-28,共7页
针对当前GIS局部放电模式智能识别过程中存在计算资源消耗大以及缺少真实标签数据的问题,利用激活函数为Leaky ReLU的MobileNet-V2模型,在减少模型参数量的同时提取大量的图像特征信息。并融合迁移学习对模型参数进行预训练,在减少网络... 针对当前GIS局部放电模式智能识别过程中存在计算资源消耗大以及缺少真实标签数据的问题,利用激活函数为Leaky ReLU的MobileNet-V2模型,在减少模型参数量的同时提取大量的图像特征信息。并融合迁移学习对模型参数进行预训练,在减少网络对输入数据量需求的同时提高模型的识别准确性。结果表明,该模型的参数量可降至2.24×10^(6),并且对于干扰以及GIS局部放电模式识别的平均准确率分别达到95.8%和92.1%,与传统深度学习模型相比,该模型在显著降低计算复杂度的同时提升模式识别的准确率,对实际GIS设备进行有效、智能、轻量化运维检修具有一定的价值与意义。 展开更多
关键词 气体绝缘组合电器 mobilenet-v2 迁移学习 故障诊断 智能运维
在线阅读 下载PDF
基于改进YOLOv4防震锤的定位识别与丢失检测
10
作者 张元伟 陈春玲 张楠楠 《计算机应用与软件》 北大核心 2025年第3期135-140,161,共7页
针对高压线路巡检中防震锤的识别定位与丢失检测,提出一种基于改进YOLOv4的算法模型。首先根据收集而来的巡检图像做有目的地数据增强,扩大数据集。然后融入迁移学习思想,在模型训练过程中使用预权重以及进行冻结训练。最后将YOLOv4原... 针对高压线路巡检中防震锤的识别定位与丢失检测,提出一种基于改进YOLOv4的算法模型。首先根据收集而来的巡检图像做有目的地数据增强,扩大数据集。然后融入迁移学习思想,在模型训练过程中使用预权重以及进行冻结训练。最后将YOLOv4原始主干特征提取网络替换成轻量型网络MobileNet V2,将深度可分离卷积运用于网络中,大大减少参数量。对实验结果进行对比分析,改进后的算法模型综合性能表现良好,也符合巡检要求。 展开更多
关键词 深度学习 目标检测 防震锤 YOLOv4 mobilenet v2
在线阅读 下载PDF
基于脑电信号特征的高铁调度员疲劳状态识别 被引量:2
11
作者 张光远 邓龙 +3 位作者 王亚伟 孙自伟 李莎 陈诚 《中国安全科学学报》 CAS CSCD 北大核心 2024年第6期235-246,共12页
为增强铁路行车的稳定性与安全性,有效识别调度员的疲劳状态对行车组织的影响,基于脑电(EEG)信号特征,提出一种调度员疲劳状态识别方法,根据作业时间段划分调度员的疲劳状态,设计高铁调度模拟试验获取脑电信号数据,通过小波级数展开和... 为增强铁路行车的稳定性与安全性,有效识别调度员的疲劳状态对行车组织的影响,基于脑电(EEG)信号特征,提出一种调度员疲劳状态识别方法,根据作业时间段划分调度员的疲劳状态,设计高铁调度模拟试验获取脑电信号数据,通过小波级数展开和傅里叶变换提取高铁调度被试的3种脑电波频域幅值作为特征值,结合调度员作业特征和脑电信号特征,验证疲劳状态的划分结果,通过Python语言环境搭建ResNet18+SoftMax和MobileNet V2+SoftMax这2种模型,基于深度学习方法,将输入特征转换为三维立体矩形模型,并优化调整权重,获得最优模型,从而判断高铁调度员的疲劳状态。研究结果表明:ResNet18+SoftMax和MobileNet V2+SoftMax神经网络模型对高铁调度试验参与人员的疲劳状态识别准确率分别为92.78%和99.17%;相较于支持向量机(SVM)模型,这2种模型可提升清醒状态和疲劳状态的识别精度,并降低运算时间,其中,MobileNet V2+SoftMax模型的识别准确率和运行速度最优。以MobileNet V2+SoftMax模型原理为内核,可以更快速准确地识别高铁调度员在长时间作业条件下的潜在疲劳风险。 展开更多
关键词 脑电(EEG)信号 高铁调度员 疲劳状态识别 mobilenet v2网络 ResNet18网络 SoftMax回归
在线阅读 下载PDF
基于改进DeepLabv3+的轻量化作物杂草识别方法 被引量:3
12
作者 曲福恒 李金状 +2 位作者 杨勇 康镇南 严兴旺 《石河子大学学报(自然科学版)》 CAS 北大核心 2024年第1期117-125,共9页
为在存储资源与计算能力有限的设备上实现田间作物和杂草的识别,本文提出一种基于改进DeepLabv3+的轻量化语义分割网络。首先,以MobileNet v2作为DeepLabv3+的特征提取骨干网络,提出双分支残差模块替换倒残差模块,并删除后两层卷积以降... 为在存储资源与计算能力有限的设备上实现田间作物和杂草的识别,本文提出一种基于改进DeepLabv3+的轻量化语义分割网络。首先,以MobileNet v2作为DeepLabv3+的特征提取骨干网络,提出双分支残差模块替换倒残差模块,并删除后两层卷积以降低模型参数量。其次,在空洞空间金字塔池化(Atrous Spatial Pyramid Pooling,ASPP)模块中引入分组逐点卷积,使用深度扩张卷积替换标准卷积,并将卷积后的特征图进行多尺度特征融合增强对作物和杂草深层特征的提取能力。最后,将原有的非线性激活函数替换为Leaky ReLU激活函数来提升分割精度。实验结果表明:改进后网络的mIOU达到86.75%,参数量仅为0.69M,FPS达到了98,与原始DeepLabv3+以及3个典型轻量化语义分割网络的相比,参数量最小,在对比的轻量化网络中具有最高的分割精度。 展开更多
关键词 作物和杂草识别 轻量化 语义分割 DeepLabv3+ mobilenet v2 多尺度特征融合
在线阅读 下载PDF
基于MobileNet的恶意软件家族分类模型 被引量:10
13
作者 曾娅琴 张琳琳 +1 位作者 张若楠 杨波 《计算机工程》 CAS CSCD 北大核心 2020年第4期162-168,共7页
现有基于卷积神经网络(CNN)的恶意代码分类方法存在计算资源消耗较大的问题.为降低分类过程中的计算量和参数量,构建基于恶意代码可视化和轻量级CNN模型的恶意软件家族分类模型.将恶意软件可视化为灰度图,以灰度图的相似度表示同一家族... 现有基于卷积神经网络(CNN)的恶意代码分类方法存在计算资源消耗较大的问题.为降低分类过程中的计算量和参数量,构建基于恶意代码可视化和轻量级CNN模型的恶意软件家族分类模型.将恶意软件可视化为灰度图,以灰度图的相似度表示同一家族的恶意软件在代码结构上的相似性,利用灰度图训练带有深度可分离卷积的神经网络模型MobileNet v2,自动提取纹理特征,并采用Softmax分类器对恶意代码进行家族分类.实验结果表明,该模型对恶意代码分类的平均准确率为99.32%,较经典的恶意代码可视化模型高出2.14个百分点. 展开更多
关键词 卷积神经网络 恶意软件分类 纹理特征 mobilenet v2模型 Softmax模型
在线阅读 下载PDF
基于超像素分割的电力故障识别算法研究 被引量:1
14
作者 李渊 吴对平 +4 位作者 杨瑞 包正红 曲全磊 沈洁 刘刚 《智慧电力》 北大核心 2024年第12期43-50,共8页
针对电力场景中的网状目标物提取难题,提出了一种基于超像素分割的电力故障识别算法。首先,在LAB空间上应用超像素分割算法进行分割,采用改进K聚类的方法生成网格簇;然后,针对网格簇分类困难的问题,提出了双重注意力机制MobileNet V2网... 针对电力场景中的网状目标物提取难题,提出了一种基于超像素分割的电力故障识别算法。首先,在LAB空间上应用超像素分割算法进行分割,采用改进K聚类的方法生成网格簇;然后,针对网格簇分类困难的问题,提出了双重注意力机制MobileNet V2网络,分类后同类网格簇融合结果即为目标物掩膜;最后,在输电线路杆塔和换流阀巡检通道金属屏蔽网数据集上开展训练,获得了较高的准确率,并开展了边缘强化实验。 展开更多
关键词 网状目标物 超像素分割 K聚类 mobilenet v2 注意力机制
在线阅读 下载PDF
基于可分离扩张卷积和通道剪枝的番茄病害分类方法 被引量:5
15
作者 姜晟久 钟国韵 《江苏农业科学》 北大核心 2024年第2期182-189,共8页
为了实现番茄病害的快速检测,针对传统卷积神经网络病害分类方法参数量大、对算力要求高的问题,提出了一种基于可分离扩张卷积和通道剪枝的番茄病害分类方法。基于MobileNet v2,提出了一种可分离扩张卷积块,在不增加网络参数的情况下,... 为了实现番茄病害的快速检测,针对传统卷积神经网络病害分类方法参数量大、对算力要求高的问题,提出了一种基于可分离扩张卷积和通道剪枝的番茄病害分类方法。基于MobileNet v2,提出了一种可分离扩张卷积块,在不增加网络参数的情况下,扩大网络的感受野,提升网络提取番茄叶部病害特征的能力。然后替换PReLU激活函数,避免产生梯度弥散问题。同时能够更好地处理图像,提高网络对番茄叶部病害负值特征信息的提取能力,具有更好的鲁棒性。最后,使用通道剪枝技术,引入缩放因子联合权重损失函数,分辨相对不重要的通道,并对其进行裁剪,再对剪枝后的网络进行微调并重复以上步骤,在大幅减少网络参数量的同时,不影响网络的性能。在数据集上的结果表明,研究方法在网络参数量仅为0.7 M的情况下,准确率达到了96.44%,精确率达到了96.36%。与目前主流轻量化网络MobileNet v3、GhostNet、ShuffleNet v2相比,模型准确率分别提高了0.45、0.77、0.24百分点,同时模型参数量分别仅为以上模型的12.96%、13.46%、30.43%,模型更轻量且准确率更高。 展开更多
关键词 番茄病害 可分离扩张卷积 通道剪枝 mobilenet v2
在线阅读 下载PDF
基于深度学习的住院部口服药分类模型的构建
16
作者 王茜玉 李南欣 +4 位作者 向凡 李杨 唐良友 向军莲 张俊然 《护理研究》 北大核心 2024年第6期948-954,共7页
目的:基于深度学习法构建针对住院部的口服药分类模型。方法:模拟实际应用场景,采集95类药丸图片构建数据集,并对其进行图片预处理操作;以MobileNet V2网络为基础架构建立药丸分类模型,并在模型中嵌入注意力机制以增强网络特征通道间的... 目的:基于深度学习法构建针对住院部的口服药分类模型。方法:模拟实际应用场景,采集95类药丸图片构建数据集,并对其进行图片预处理操作;以MobileNet V2网络为基础架构建立药丸分类模型,并在模型中嵌入注意力机制以增强网络特征通道间的依赖关系;融合迁移学习的方法,利用自建药丸数据集对模型进行训练和测试,通过模型分类准确率和模型参数量指标检测模型性能。结果:本研究构建的模型在自然环境中采集的口服药丸图片分类方面表现卓越,通过使用包含95类药丸、总计728张图片的自建数据集进行训练和测试,模型分类准确率为95.8%,分别比MobileNet V2、ShuffleNet V2、ResNet50高11.6%、14.3%、11.3%。模型参数量为2.55 M,约为ResNet50的1/10。结论:本研究构建的模型可以较好地平衡模型的复杂度和分类准确率,为药房等场景下涉及的药丸自动分类系统提供技术路线和效果验证,对于提升药房发药、病房分药等具体情形的护理自动化水平具有一定的理论和实际应用价值。 展开更多
关键词 药房 口服药 图像处理 分类模型 深度学习 mobilenet v2网络
在线阅读 下载PDF
融合双分支特征和注意力机制的葡萄病虫害识别模型 被引量:19
17
作者 彭红星 徐慧明 刘华鼐 《农业工程学报》 EI CAS CSCD 北大核心 2022年第10期156-165,共10页
葡萄病虫害识别是精细化防治的前提。针对现有研究中存在的数据集少、识别精度低、模型参数量大等问题,该研究构建包含健康叶片、3类病害叶片和16类虫害的葡萄病虫害数据集,提出基于改进MobileNet V2模型的葡萄病虫害识别模型。首先在Mo... 葡萄病虫害识别是精细化防治的前提。针对现有研究中存在的数据集少、识别精度低、模型参数量大等问题,该研究构建包含健康叶片、3类病害叶片和16类虫害的葡萄病虫害数据集,提出基于改进MobileNet V2模型的葡萄病虫害识别模型。首先在MobileNet V2模型的反向残差模块中嵌入坐标注意力(Coordinate Attention,CA)机制,提升模型的信息表征能力;然后使用深度可分离卷积设计双分支特征融合模块,加强模型的特征提取能力;最后对模型的通道数进行调整,精简模型结构。试验结果表明:MobileNet_Vitis在葡萄病虫害数据集上的识别准确率和F1分数为89.16%和80.44%,相比改进前的MobileNet V2提高了1.83和9.31个百分点,而模型参数大小为7.85 MB,减少了8.5%。与ResNet101、ShuffleNetV2、MobileNetV3和GhostNet相比,MobileNet_Vitis的识别精度和F1分数更高,参数量更小。MobileNet_Vitis对单张葡萄病虫害图像的推理时间为17.53 ms,可以达到快速识别的要求。该研究提出的模型能够较好地识别葡萄病虫害,并且较大幅度地减少模型的参数量。将MobileNet_Vitis模型部署到移动端的小程序上,可为葡萄病虫害的防治提供帮助。 展开更多
关键词 病虫害 图像识别 葡萄 mobilenet v2 双分支特征融合 坐标注意力机制
在线阅读 下载PDF
基于单视图稀疏点的汽车三维模型重建 被引量:1
18
作者 王博 江祖毅 《武汉科技大学学报》 CAS 北大核心 2023年第4期296-302,共7页
基于深度学习的图像识别模型训练需要大量数据,而不同角度的汽车视图数据难以在短时间内收集,为此提出一种利用单视图稀疏点的汽车三维模型重建方法,依靠少量数据也能得到精确的结果。创建了包含3000多张不同汽车品牌的多视角二维汽车... 基于深度学习的图像识别模型训练需要大量数据,而不同角度的汽车视图数据难以在短时间内收集,为此提出一种利用单视图稀疏点的汽车三维模型重建方法,依靠少量数据也能得到精确的结果。创建了包含3000多张不同汽车品牌的多视角二维汽车图形数据集,并在TensorFlow框架下搭建了基于MobileNet V2网络和迁移学习的汽车视图角度识别系统,其结果能够进一步用于快速的模型匹配及重建;根据创建的汽车三维线框模型库以及二维关键点和三维模型的映射关系,利用带约束的最小二乘法求出模型库中不同模型对于重建的贡献量系数,直接由二维图片上稀疏的25个关键点生成三维模型。误差分析结果显示,重建的三维车身模型具有较高精度。 展开更多
关键词 三维模型重建 汽车造型 图像识别 单视图 稀疏点 mobilenet v2 迁移学习
在线阅读 下载PDF
车道线检测的PSPNet改进算法 被引量:1
19
作者 霍爱清 冯若水 李易 《电子测量技术》 北大核心 2023年第10期144-149,共6页
车道线检测已成为智能驾驶领域研究的一项重要课题,而实际应用时,常出现车道线分割不准确、实时检测能力不佳的问题。为此本文提出一种金字塔场景分析网络的改进算法。在编码结构的基础上搭建主体网络PSPNet,选用MobileNet v2轻量级网... 车道线检测已成为智能驾驶领域研究的一项重要课题,而实际应用时,常出现车道线分割不准确、实时检测能力不佳的问题。为此本文提出一种金字塔场景分析网络的改进算法。在编码结构的基础上搭建主体网络PSPNet,选用MobileNet v2轻量级网络作为编码器的主干网络,减少了整体网络的计算复杂度及参数量;网络中添加了空洞卷积,并在不同层间实现特征融合,扩充了模型感受野,同时丰富了局部特征;最后用自适应直线拟合算法对各类型车道线拟合。本文使用Caltech车道线数据集进行测试,实验结果显示,改进后的PSPNet算法对不同类型的车道线均有较好的分割结果,与PSPNet算法相比精度和交并比分别提升了3.91%、4.14%,且FPS达28帧/s,本文算法的分割精度和推理速度均优于其他对比算法。 展开更多
关键词 PSPNet 语义分割 mobilenet v2网络 空洞卷积 自适应拟合
在线阅读 下载PDF
基于改进SSD的水下光学图像感兴趣目标检测算法研究 被引量:17
20
作者 李宝奇 黄海宁 +2 位作者 刘纪元 刘正君 韦琳哲 《电子与信息学报》 EI CSCD 北大核心 2022年第10期3372-3378,共7页
针对轻量化目标模型SSD-MV2对水下光学图像感兴趣目标检测精度低的问题,该文提出一种通道可选择的轻量化特征提取模块(SEB)和一种卷积核可变形、通道可选择的特征提取模块(SDB)。与此同时,利用SEB模块和SDB模块分别重新设计了SSD-MV2的... 针对轻量化目标模型SSD-MV2对水下光学图像感兴趣目标检测精度低的问题,该文提出一种通道可选择的轻量化特征提取模块(SEB)和一种卷积核可变形、通道可选择的特征提取模块(SDB)。与此同时,利用SEB模块和SDB模块分别重新设计了SSD-MV2的基础网络和附加特征提取网络,记作SSD-MV2SDB,并为其选择了合理的基础网络扩张系数和附加特征提取网络SDB模块数量。在水下图像感兴趣目标检测数据集UOI-DET上,SSD-MV2SDB比SSD-MV2检测精度提高3.04%。实验结果表明,SSD-MV2SDB适用于水下图像感兴趣目标检测任务。 展开更多
关键词 水下光学图像感兴趣目标检测 SSD mobilenet v2 可变形卷积 通道可选择
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部