期刊文献+
共找到1,419篇文章
< 1 2 71 >
每页显示 20 50 100
Global optimal path planning for mobile robot based onimproved Dijkstra algorithm and ant system algorithm 被引量:21
1
作者 谭冠政 贺欢 Aaron Sloman 《Journal of Central South University of Technology》 EI 2006年第1期80-86,共7页
A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK ... A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK graph theory to establish the free space model of the mobile robot, the second step is adopting the improved Dijkstra algorithm to find out a sub-optimal collision-free path, and the third step is using the ant system algorithm to adjust and optimize the location of the sub-optimal path so as to generate the global optimal path for the mobile robot. The computer simulation experiment was carried out and the results show that this method is correct and effective. The comparison of the results confirms that the proposed method is better than the hybrid genetic algorithm in the global optimal path planning. 展开更多
关键词 mobile robot global optimal path planning improved Dijkstra algorithm ant system algorithm MAKLINK graph free MAKLINK line
在线阅读 下载PDF
Ant Colony System Algorithm for Real-Time Globally Optimal Path Planning of Mobile Robots 被引量:26
2
作者 TAN Guan-Zheng HE Huan SLOMAN Aaron 《自动化学报》 EI CSCD 北大核心 2007年第3期279-285,共7页
为活动机器人计划的即时全球性最佳的路径的一个新奇方法基于蚂蚁殖民地系统(交流) 被建议算法。这个方法包括三步:第一步正在利用 MAKLINK 图理论建立活动机器人的空间模型,第二步正在利用 Dijkstra 算法发现一条非最优的没有碰撞的... 为活动机器人计划的即时全球性最佳的路径的一个新奇方法基于蚂蚁殖民地系统(交流) 被建议算法。这个方法包括三步:第一步正在利用 MAKLINK 图理论建立活动机器人的空间模型,第二步正在利用 Dijkstra 算法发现一条非最优的没有碰撞的路径,并且第三步正在利用 ACS 算法优化非最优的路径的地点以便产生全球性最佳的路径。建议方法是有效的并且能在即时路径被使用活动机器人计划的计算机模拟实验表演的结果。建议方法比与优秀人材模型一起基于基因算法计划方法的路径处于集中速度,答案变化,动态集中行为,和计算效率有更好的性能,这被验证了。 展开更多
关键词 蚁群系统 运算法则 自动化系统 计算机技术
在线阅读 下载PDF
A review:On path planning strategies for navigation of mobile robot 被引量:93
3
作者 B.K. Patle Ganesh Babu L +2 位作者 Anish Pandey D.R.K. Parhi A. Jagadeesh 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第4期582-606,共25页
This paper presents the rigorous study of mobile robot navigation techniques used so far.The step by step investigations of classical and reactive approaches are made here to understand the development of path plannin... This paper presents the rigorous study of mobile robot navigation techniques used so far.The step by step investigations of classical and reactive approaches are made here to understand the development of path planning strategies in various environmental conditions and to identify research gap.The classical approaches such as cell decomposition(CD),roadmap approach(RA),artificial potential field(APF);reactive approaches such as genetic algorithm(GA),fuzzy logic(FL),neural network(NN),firefly algorithm(FA),particle swarm optimization(PSO),ant colony optimization(ACO),bacterial foraging optimization(BFO),artificial bee colony(ABC),cuckoo search(CS),shuffled frog leaping algorithm(SFLA)and other miscellaneous algorithms(OMA)are considered for study.The navigation over static and dynamic condition is analyzed(for single and multiple robot systems)and it has been observed that the reactive approaches are more robust and perform well in all terrain when compared to classical approaches.It is also observed that the reactive approaches are used to improve the performance of the classical approaches as a hybrid algorithm.Hence,reactive approaches are more popular and widely used for path planning of mobile robot.The paper concludes with tabular data and charts comparing the frequency of individual navigational strategies which can be used for specific application in robotics. 展开更多
关键词 mobile robot NAVIGATION path planning CLASSICAL APPROACHES Reactive APPROACHES Artificial INTELLIGENCE
在线阅读 下载PDF
Non-smooth environment modeling and global path planning for mobile robots 被引量:6
4
作者 邹小兵 蔡自兴 孙国荣 《Journal of Central South University of Technology》 2003年第3期248-254,共7页
An Approximate Voronoi Boundary Network is constructed as the environmental model by way of enlar-ging the obstacle raster. The connectivity of the path network under complex environment is ensured through build-ing t... An Approximate Voronoi Boundary Network is constructed as the environmental model by way of enlar-ging the obstacle raster. The connectivity of the path network under complex environment is ensured through build-ing the second order Approximate Voronoi Boundary Network after adding virtual obstacles at joint-close grids. Thismethod embodies the network structure of the free area of environment with less nodes, so the complexity of pathplanning problem is reduced largely. An optimized path for mobile robot under complex environment is obtainedthrough the Genetic Algorithm based on the elitist rule and re-optimized by using the path-tightening method. Sincethe elitist one has the only authority of crossover, the management of one group becomes simple, which makes forobtaining the optimized path quickly. The Approximate Voronoi Boundary Network has a good tolerance to the im-precise a priori information and the noises of sensors under complex environment. Especially it is robust in dealingwith the local or partial changes, so a small quantity of dynamic obstacles is difficult to alter the overall character ofits connectivity, which means that it can also be adopted in dynamic environment by fusing the local path planning. 展开更多
关键词 NON-SMOOTH modeling VORONOI DIAGRAM path planning genetic algorithm
在线阅读 下载PDF
Experimental study of path planning problem using EMCOA for a holonomic mobile robot 被引量:5
5
作者 MOHSENI Alireza DUCHAINE Vincent WONG Tony 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第6期1450-1462,共13页
In this paper,a comparative study of the path planning problem using evolutionary algorithms,in comparison with classical methods such as the A*algorithm,is presented for a holonomic mobile robot.The configured naviga... In this paper,a comparative study of the path planning problem using evolutionary algorithms,in comparison with classical methods such as the A*algorithm,is presented for a holonomic mobile robot.The configured navigation system,which consists of the integration of sensors sources,map formatting,global and local path planners,and the base controller,aims to enable the robot to follow the shortest smooth path delicately.Grid-based mapping is used for scoring paths efficiently,allowing the determination of collision-free trajectories from the initial to the target position.This work considers the evolutionary algorithms,the mutated cuckoo optimization algorithm(MCOA)and the genetic algorithm(GA),as a global planner to find the shortest safe path among others.A non-uniform motion coefficient is introduced for MCOA in order to increase the performance of this algorithm.A series of experiments are accomplished and analyzed to confirm the performance of the global planner implemented on a holonomic mobile robot.The results of the experiments show the capacity of the planner framework with respect to the path planning problem under various obstacle layouts. 展开更多
关键词 holonomic robot path planning evolutionary algorithm(EA)
在线阅读 下载PDF
Path planning in uncertain environment by using firefly algorithm 被引量:17
6
作者 B.K.Patle Anish Pandey +1 位作者 A.Jagadeesh D.R.Parhi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2018年第6期691-701,共11页
Autonomous mobile robot navigation is one of the most emerging areas of research by using swarm intelligence. Path planning and obstacle avoidance are most researched current topics like navigational challenges for mo... Autonomous mobile robot navigation is one of the most emerging areas of research by using swarm intelligence. Path planning and obstacle avoidance are most researched current topics like navigational challenges for mobile robot. The paper presents application and implementation of Firefly Algorithm(FA)for Mobile Robot Navigation(MRN) in uncertain environment. The uncertainty is defined over the changing environmental condition from static to dynamic. The attraction of one firefly towards the other firefly due to variation of their brightness is the key concept of the proposed study. The proposed controller efficiently explores the environment and improves the global search in less number of iterations and hence it can be easily implemented for real time obstacle avoidance especially for dynamic environment. It solves the challenges of navigation, minimizes the computational calculations, and avoids random moving of fireflies. The performance of proposed controller is better in terms of path optimality when compared to other intelligent navigational approaches. 展开更多
关键词 mobile robot NAVIGATION FIREFLY algorithm path planning OBSTACLE AVOIDANCE
在线阅读 下载PDF
Global path planning approach based on ant colony optimization algorithm 被引量:6
7
作者 文志强 蔡自兴 《Journal of Central South University of Technology》 EI 2006年第6期707-712,共6页
Ant colony optimization (ACO) algorithm was modified to optimize the global path. In order to simulate the real ant colonies, according to the foraging behavior of ant colonies and the characteristic of food, concepti... Ant colony optimization (ACO) algorithm was modified to optimize the global path. In order to simulate the real ant colonies, according to the foraging behavior of ant colonies and the characteristic of food, conceptions of neighboring area and smell area were presented. The former can ensure the diversity of paths and the latter ensures that each ant can reach the goal. Then the whole path was divided into three parts and ACO was used to search the second part path. When the three parts pathes were adjusted, the final path was found. The valid path and invalid path were defined to ensure the path valid. Finally, the strategies of the pheromone search were applied to search the optimum path. However, when only the pheromone was used to search the optimum path, ACO converges easily. In order to avoid this premature convergence, combining pheromone search and random search, a hybrid ant colony algorithm(HACO) was used to find the optimum path. The comparison between ACO and HACO shows that HACO can be used to find the shortest path. 展开更多
关键词 mobile robot ant colony optimization global path planning PHEROMONE
在线阅读 下载PDF
Swarm intelligence based dynamic obstacle avoidance for mobile robots under unknown environment using WSN 被引量:4
8
作者 薛晗 马宏绪 《Journal of Central South University of Technology》 EI 2008年第6期860-868,共9页
To solve dynamic obstacle avoidance problems, a novel algorithm was put forward with the advantages of wireless sensor network (WSN). In view of moving velocity and direction of both the obstacles and robots, a mathem... To solve dynamic obstacle avoidance problems, a novel algorithm was put forward with the advantages of wireless sensor network (WSN). In view of moving velocity and direction of both the obstacles and robots, a mathematic model was built based on the exposure model, exposure direction and critical speeds of sensors. Ant colony optimization (ACO) algorithm based on bionic swarm intelligence was used for solution of the multi-objective optimization. Energy consumption and topology of the WSN were also discussed. A practical implementation with real WSN and real mobile robots were carried out. In environment with multiple obstacles, the convergence curve of the shortest path length shows that as iterative generation grows, the length of the shortest path decreases and finally reaches a stable and optimal value. Comparisons show that using sensor information fusion can greatly improve the accuracy in comparison with single sensor. The successful path of robots without collision validates the efficiency, stability and accuracy of the proposed algorithm, which is proved to be better than tradition genetic algorithm (GA) for dynamic obstacle avoidance in real time. 展开更多
关键词 wireless sensor network dynamic obstacle avoidance mobile robot ant colony algorithm swarm intelligence path planning NAVIGATION
在线阅读 下载PDF
六自由度机械臂快速路径规划与手眼标定研究 被引量:3
9
作者 孙超 胡志明 +2 位作者 彭麟谊 叶子安 丁建军 《制造技术与机床》 北大核心 2025年第2期48-56,共9页
针对双向快速随机扩展树(rapidly-exploring random trees-connect,RRT-Connect)算法的随机性强、搜索效率低、路径规划时间过长等问题,提出一种改进的RRT-Connect算法。该算法在起始点与目标点连线的中垂线上设置第三节点,采用高斯分... 针对双向快速随机扩展树(rapidly-exploring random trees-connect,RRT-Connect)算法的随机性强、搜索效率低、路径规划时间过长等问题,提出一种改进的RRT-Connect算法。该算法在起始点与目标点连线的中垂线上设置第三节点,采用高斯分布限制第三节点的采样区域,避免第三采样节点距离中点较远导致的路径冗余。算法通过第三节点分别向起始点和目标点生成2棵随机树,结合贪婪算法思想以及引入动态步长的方法,提高算法的规划效率。仿真结果表明,改进的RRT-Connect算法相较于传统RRT-Connect算法,平均运行时间缩短了48.7%,平均迭代次数减少了38.9%,平均路径长度减少了25.2%。另外,针对传统的九点标定法精度的问题,提出一种改进的九点标定方法,该方法通过获取机械臂在空间同一点的多组位姿计算机械臂第六轴长度,在已知机械臂各关节角和轴长情况下,计算得到机械臂末端执行器安装后第六轴的长度,从而提高手眼标定的精度。试验结果表明,改进的方法相较于传统九点标定法其精度平均提高了2.09%。最后,在机械臂平台验证改进的RRT-Connect算法和改进的九点标定法,试验结果表明,改进的RRT-Connect算法相较于DRRT-Connect(dynamicRRT-Connect)算法在路径规划总时间和总长度上分别减少了8.28%和4.79%,改进的九点标定法相较于传统的九点标定法抓取精度提高了3%。 展开更多
关键词 机械臂 路径规划 贪婪算法 RRT-Connect算法 九点标定
在线阅读 下载PDF
基于改进人工电场算法的城市载人电动垂直起降飞行器路径规划 被引量:2
10
作者 刘光才 金松鹏 +1 位作者 李章萍 刘百庚 《科学技术与工程》 北大核心 2025年第1期238-244,共7页
针对城市场景下载人电动垂直起降飞行器(electric vertical takeoff and landing,eVTOL)路径规划问题进行了研究。首先,使用危险度栅格法进行三维城市空间建模,对选定型号的eVTOL飞行器,以航程、运行风险和高度变化为目标函数,结合飞行... 针对城市场景下载人电动垂直起降飞行器(electric vertical takeoff and landing,eVTOL)路径规划问题进行了研究。首先,使用危险度栅格法进行三维城市空间建模,对选定型号的eVTOL飞行器,以航程、运行风险和高度变化为目标函数,结合飞行器自身特性及环境限制,构建了多约束条件的载人eVTOL路径规划模型。然后,设计了一种改进人工电场算法(im-proved artificial electric field algorithm,IAEFA),在传统人工电场算法(artificial electric field algorithm,AEFA)的基础上增加了自适应库伦参数,并在库伦常数的计算中引入递减系数,以此进行仿真求解。实验结果显示,所构建的模型可以达到预期效果。使用改进算法进行路径规划的求解效果更优,相较传统粒子群算法和人工电场法,航程更短,高度变化更小且运行更为安全。最后,根据对照实验确定递减系数的取值,当递减系数取值为1.5时,改进算法的求解效果最优。 展开更多
关键词 城市空中交通 电动垂直起降飞行器 路径规划 改进人工电场算法
在线阅读 下载PDF
基于角度搜索和深度Q网络的移动机器人路径规划算法 被引量:1
11
作者 李宗刚 韩森 +1 位作者 陈引娟 宁小刚 《兵工学报》 北大核心 2025年第2期30-44,共15页
针对深度Q网络(Deep Q Network,DQN)算法在求解路径规划问题时存在学习时间长、收敛速度慢的局限性,提出一种角度搜索(Angle Searching,AS)和DQN相结合的算法(Angle Searching-Deep Q Network,AS-DQN),通过规划搜索域,控制移动机器人的... 针对深度Q网络(Deep Q Network,DQN)算法在求解路径规划问题时存在学习时间长、收敛速度慢的局限性,提出一种角度搜索(Angle Searching,AS)和DQN相结合的算法(Angle Searching-Deep Q Network,AS-DQN),通过规划搜索域,控制移动机器人的搜索方向,减少栅格节点的遍历,提高路径规划的效率。为加强移动机器人之间的协作能力,提出一种物联网信息融合技术(Internet Information Fusion Technology,IIFT)模型,能够将多个分散的局部环境信息整合为全局信息,指导移动机器人规划路径。仿真实验结果表明:与标准DQN算法相比,AS-DQN算法可以缩短移动机器人寻得到达目标点最优路径的时间,将IIFT模型与AS-DQN算法相结合路径规划效率更加显著。实体实验结果表明:AS-DQN算法能够应用于Turtlebot3无人车,并成功找到起点至目标点的最优路径。 展开更多
关键词 移动机器人 路径规划 深度Q网络 角度搜索策略 物联网信息融合技术
在线阅读 下载PDF
多障碍环境下巡检机器人路径规划优化研究 被引量:2
12
作者 乔道迹 张艳兵 《现代电子技术》 北大核心 2025年第1期130-134,共5页
针对大规模、密集的障碍物分布,高效地搜索最佳路径是一个挑战,为规划出更短的巡检路线,并实现多障碍环境下的灵活避障,文中提出一种多障碍环境下巡检机器人路径规划优化方法。使用二维矩阵构建巡检环境模型,应用D*算法在巡检环境模型... 针对大规模、密集的障碍物分布,高效地搜索最佳路径是一个挑战,为规划出更短的巡检路线,并实现多障碍环境下的灵活避障,文中提出一种多障碍环境下巡检机器人路径规划优化方法。使用二维矩阵构建巡检环境模型,应用D*算法在巡检环境模型中进行巡检机器人路径规划,并将传统D*算法中的扩展步长方式改变为自适应扩展步长,使机器人在面积较大的巡检场地能够更快地完成巡检;将代价函数由欧氏距离替换为切比雪夫诺距离和曼哈顿距离融合的代价函数,并引入了平滑度函数优化线路规划结果,使规划的路径更为平滑,在遇到由于多种原因产生的新障碍物时可以重新规划路径。通过实验结果可知,无论是静态地图还是动态地图,该方法均可以快速准确地规划出一条最佳路线,并且在多种环境中应用该方法能够高效获取路径规划结果。 展开更多
关键词 多障碍 巡检机器人 路径规划 D*算法 动态环境 扩展节点 代价函数 扩展步长
在线阅读 下载PDF
改进遗传算法应用于地震场景下无人机路径规划研究 被引量:2
13
作者 李章萍 徐鑫 《安全与环境学报》 北大核心 2025年第1期237-249,共13页
为提高中强震灾害地区的救援效率,对传统路径规划模型进行了改进。传统模型在最大路程限制下优化覆盖人数,但无法均衡路程与覆盖人数,通过引入权重与均衡系数解决此问题并构建了加权路径优化模型。模型以生成路径最短、权重最大为目标,... 为提高中强震灾害地区的救援效率,对传统路径规划模型进行了改进。传统模型在最大路程限制下优化覆盖人数,但无法均衡路程与覆盖人数,通过引入权重与均衡系数解决此问题并构建了加权路径优化模型。模型以生成路径最短、权重最大为目标,采用多无人机、单起降点的调度方法。为改善传统遗传算法的收敛性及对局部解空间的搜索能力,引入2-opt局部搜索算法、权重修复机制、以种群多样性指标动态调整算法的变异率和交叉率等策略,并对模型进行求解。结果表明,在多种运行场景下,该模型生成路径更加优越,算法与传统遗传算法、粒子群优化(Particle Swarm Optimization,PSO)算法、A^(*)算法相比,可得到救援效率更高的飞行路径。 展开更多
关键词 公共安全 中强震 改进遗传算法 无人机路径规划
在线阅读 下载PDF
改进A^(*)算法融合DWA机器人路径规划研究 被引量:1
14
作者 曾宪阳 张加旺 《电子测量技术》 北大核心 2025年第6期20-27,共8页
在物流机器人运输流程中,路径规划是核心环节,面临路径不够平滑及算法搜索效率低下的挑战。A^(*)算法作为广泛应用的全局路径规划方法,在应用于物流机器人时存在无法有效实现路径平滑等问题。为此,对传统A^(*)算法进行了改进,通过动态... 在物流机器人运输流程中,路径规划是核心环节,面临路径不够平滑及算法搜索效率低下的挑战。A^(*)算法作为广泛应用的全局路径规划方法,在应用于物流机器人时存在无法有效实现路径平滑等问题。为此,对传统A^(*)算法进行了改进,通过动态加权处理启发函数,并利用Floyd算法去除路径中的冗余点,同时引入安全距离机制以防碰撞。此外,还对路径进行了平滑优化,以更好地适应物流机器人的实际移动需求。MATLAB仿真结果显示,改进后的A^(*)算法相比传统算法在转折点数量上平均减少了58.5%,路径长度缩短了3.19%,遍历点数降低了59.9%。进一步结合DWA算法进行局部路径规划,实现了避障功能。通过仿真和实车实验验证了该融合算法的有效性。 展开更多
关键词 A^(*)算法 路径规划 DWA算法 物流机器人 MATLAB仿真
在线阅读 下载PDF
基于改进蜻蜓算法的移动机器人路径规划
15
作者 宋庆军 孟祥福 +3 位作者 姜海燕 宋庆辉 李凯 郝文超 《组合机床与自动化加工技术》 北大核心 2025年第7期33-38,44,共7页
针对蜻蜓算法在路径规划中的收敛精度低和路径质量差等问题,提出了一种融合正余弦策略的蜻蜓优化算法。通过Piecewise混沌映射来初始化种群,进而确保了潜在解在探索空间中的均一分布,并引入了正余弦算法和莱维飞行来更新位置,增强了搜... 针对蜻蜓算法在路径规划中的收敛精度低和路径质量差等问题,提出了一种融合正余弦策略的蜻蜓优化算法。通过Piecewise混沌映射来初始化种群,进而确保了潜在解在探索空间中的均一分布,并引入了正余弦算法和莱维飞行来更新位置,增强了搜索效率。此外,通过在栅格地图上实施16方向24邻域搜索和对角障碍机制,减少了搜索次数。在不同环境中,该算法的搜索时间和迭代次数均优于蜻蜓算法和其他优化算法,规划的路径更短。在真实场景下的实验结果证明了其在收敛精度和速度上的显著提升,以及在路径规划领域的适用性。 展开更多
关键词 路径规划 移动机器人 蜻蜓算法 正余弦策略
在线阅读 下载PDF
融合IGJO与TEB算法的移动机器人路径规划
16
作者 段震 袁源 +1 位作者 李原 李胜利 《传感器与微系统》 北大核心 2025年第4期132-136,共5页
针对当前移动机器人路径规划中存在规划效率低、动态性差的问题,提出了一种融合改进金豺优化(IGJO)算法和时间弹性带(TEB)法的路径规划方法。首先,在IGJO算法种群初始化中,引入了Tent映射逆向学习,从而增强算法的寻优能力;其次,引入柯... 针对当前移动机器人路径规划中存在规划效率低、动态性差的问题,提出了一种融合改进金豺优化(IGJO)算法和时间弹性带(TEB)法的路径规划方法。首先,在IGJO算法种群初始化中,引入了Tent映射逆向学习,从而增强算法的寻优能力;其次,引入柯西突变,对最优解进行扰动和更新,从而提升算法的寻优精度。最后,引入TEB算法作为动态规划算法,帮助移动机器人避开移动障碍,同时结合IGJO算法,提升算法的综合规划性能。仿真结果表明:在不同仿真环境中IGJO-TEB算法相较其他算法在路径距离、运行时间两方面分别减短了1.37%~2.65%和10.26%~21.77%。真实场景实验果表明:本文算法能够在各类实际场景下完成路径规划任务,较其他算法具有显著的优越性。 展开更多
关键词 金豺优化算法 时间弹性带算法 路径规划 移动机器人
在线阅读 下载PDF
基于改进A^(*)平滑性路径规划算法研究
17
作者 王云亮 张赛 吴艳娟 《计算机应用与软件》 北大核心 2025年第1期258-263,276,共7页
为了解决传统A^(*)算法执行效率不高,转折点过多等问题,提出一种基于优化关键点选取和平滑路径的改进A^(*)算法。首先运用一种改进跳点搜索算法对A^(*)算法加快跳点搜索速度并对扩展子节点进行遴选,引入RRT*中剪枝思想在二次路径规划时... 为了解决传统A^(*)算法执行效率不高,转折点过多等问题,提出一种基于优化关键点选取和平滑路径的改进A^(*)算法。首先运用一种改进跳点搜索算法对A^(*)算法加快跳点搜索速度并对扩展子节点进行遴选,引入RRT*中剪枝思想在二次路径规划时剔除非必要的节点。最后将A^(*)算法结合Bezier曲线对生成路径进行平滑性处理。为测试改进A^(*)算法的可行性与有效性,在多种不同尺寸规格的栅格地图中和移动机器人平台上进行对比仿真实验。结果表明,改进后A^(*)算法相比于原A^(*)算法生成扩展节点数量更少、寻路时间缩短、执行效率更高,改进后A^(*)算法路径规划性能得到明显提升。 展开更多
关键词 移动机器人 A^(*)算法 贝塞尔曲线 路径规划
在线阅读 下载PDF
基于改进A^(*)算法的水空两栖机器人多目标路径规划
18
作者 沈跃 孙浩 +2 位作者 沈亚运 郭奕 刘慧 《农业工程学报》 北大核心 2025年第6期62-70,共9页
实现水空两栖机器人安全、高效进行多目标点跨塘水质检测作业,减少传统水质检测模式时间及经济成本,合理的路径规划十分重要。针对传统A^(*)算法路径曲折、搜索效率低、无法考虑多栖机器人约束特性等问题,该研究提出一种改进A^(*)的水... 实现水空两栖机器人安全、高效进行多目标点跨塘水质检测作业,减少传统水质检测模式时间及经济成本,合理的路径规划十分重要。针对传统A^(*)算法路径曲折、搜索效率低、无法考虑多栖机器人约束特性等问题,该研究提出一种改进A^(*)的水空两栖机器人路径规划算法。首先采集障碍物分布情况和高度信息,建立多水域2.5维栅格地图;其次在A^(*)算法评价函数中加入能耗、时间及安全代价,通过调节不同权重获取相应初始路径;然后通过动态分配权重改进启发式函数,加快搜索效率,并利用目标成本函数对所有目标进行优先级判定,实现多目标路径规划;最后通过增加空中模态切换点、删除冗余点及采用B样条曲线优化路径,生成可连接多水域多水质检测点的三维平滑轨迹。仿真试验结果表明:与传统A^(*)算法和陆空A^(*)算法相比,改进A^(*)算法迭代次数分别减少70.04%与68.07%,路径长度分别减少35.44%与7.6%,总转角分别减小83.63%与8.65%,危险节点数分别减少80.67%与33.33%。真实水域试验表明:改进A^(*)算法的迭代次数比传统A^(*)算法和陆空A^(*)算法减少84.89%与83.78%,路径长度分别减少12%与0.6%,总转角分别减小73.21%与22.1%,危险节点数分别减少84.62%与80%,可规划出通过多个目标点的安全、平滑路径,有效提高水质检测效率,为多栖机器人自主导航提供参考。 展开更多
关键词 多目标 路径规划 水空两栖机器人 A^(*)算法 轨迹优化
在线阅读 下载PDF
基于激光和视觉SLAM的自主导航机器人系统设计
19
作者 邓开连 唐志伟 +3 位作者 刘浩 陈根龙 李晓丽 黄荣 《计算机工程与设计》 北大核心 2025年第6期1592-1600,共9页
针对导航机器人在复杂环境下可能会出现导航陷入局部最优解、建图环境映射不充分的问题,提出一种基于激光和视觉SLAM的多传感器融合机器人设计方案。机器人采用基于萤火虫算法优化的建图算法Gmapping和自适应蒙特卡罗定位算法实现二维... 针对导航机器人在复杂环境下可能会出现导航陷入局部最优解、建图环境映射不充分的问题,提出一种基于激光和视觉SLAM的多传感器融合机器人设计方案。机器人采用基于萤火虫算法优化的建图算法Gmapping和自适应蒙特卡罗定位算法实现二维同步定位与建图;采用多传感器融合算法融合激光雷达、深度相机、轮式里程计、IMU实现三维同步定位与建图;提出一种分层并行A*(hierarchical parallel A*,HPA*)全局路径规划算法。实验结果表明,融合方案实现了对复杂环境的建图、定位和路径规划,导航的RMSE和MAE比传统方案分别下降了27.27%和26.76%。 展开更多
关键词 ROS机器人操作系统 移动机器人 自主导航 同步定位与建图 路径规划 多传感器融合 粒子滤波
在线阅读 下载PDF
改进蚁群算法在移动机器人路径规划中的研究
20
作者 孟文俊 席超群 +1 位作者 王荣鑫 赵晓霞 《机械设计与制造》 北大核心 2025年第5期322-326,共5页
针对基本蚁群算法在移动机器人路径规划中收敛速度慢、易陷入局部最优等问题,提出了一种改进的蚁群算法。该方法设置矩形优选区域,并在区域内增加不同初始信息素浓度,避免初期盲目性搜索;路径节点选择采用伪随机转移策略,依据迭代次数... 针对基本蚁群算法在移动机器人路径规划中收敛速度慢、易陷入局部最优等问题,提出了一种改进的蚁群算法。该方法设置矩形优选区域,并在区域内增加不同初始信息素浓度,避免初期盲目性搜索;路径节点选择采用伪随机转移策略,依据迭代次数的变化自适应调整随机或确定选择的比例;信息素挥发因子随二次函数动态调整变化,提高搜索效率;将所得最优路径再次规划,减少转角次数。仿真结果表明,该算法的寻优能力和收敛速度有了很大的提高,验证了该算法的有效性和优越性。 展开更多
关键词 路径规划 蚁群算法 移动机器人 伪随机转移策略 信息素挥发因子
在线阅读 下载PDF
上一页 1 2 71 下一页 到第
使用帮助 返回顶部