Medicinal and dietary plants provide numerous nutritional and functional compounds and also have various potential health benefits to humanity.The specific and efficient techniques for accurate identification of nutri...Medicinal and dietary plants provide numerous nutritional and functional compounds and also have various potential health benefits to humanity.The specific and efficient techniques for accurate identification of nutritional compounds and functional metabolites is crucial for the development of functional foods from medicinal and dietary plants.Nuclear magnetic resonance(NMR)and mass spectrometry(MS)are indispensable and essential technologies that provide an unsurpassed wealth of untargeted identification,quantitative and qualitative analysis,and structural information in the study of food and plant products.In the past decade,the rapid development of modern analytical technology has led to the emergence of new approaches and strategies for natural products discovery.Especially the application of novel NMRand MS-based identification and dereplication strategies aided by artificial intelligence and machine learning algorithms have brought about a significant shift in the natural products discovery process.These developments and changes in the natural products filed have given us insights into how to accurately target and mining nutritional,functional,and bioactive compounds.Thus,we have summarized recent research on novel NMR and MS based strategies and methods focusing on functional compounds,accurate identification and efficient discovery mainly in medicinal and dietary plants.This review could provide a comprehensive perspective for a better understanding of novel strategies and methods based on NMR and MS technologies,which could provide valuable insights and ideas for functional compounds mining.展开更多
In order to improve rib stability,failure criteria and instability mode of a thick coal seam with inter-band rock layer are analysed in this study.A three-dimensional mechanical model is established for the rib by con...In order to improve rib stability,failure criteria and instability mode of a thick coal seam with inter-band rock layer are analysed in this study.A three-dimensional mechanical model is established for the rib by considering the rock layer.A safety factor is defined foy the rib,and it is observed that the safety factor exhibits a positive correlation with the thickness and strength of the inter-band rock.A calculation method for determining critical parameters of the rock layer is presented to ensure the rib stability.It is revealed that incomplete propagation of the fracture at the hard rock constitutes a fundamental prerequisite for ensuring the rib stability.The influence of the position of the inter-band rock in the coal seam on failure mechanism of the rib was thoroughly investigated by developing a series of physical models for the rib at the face area.The best position for the inter-band rock in the coal seam is at a height of 1.5 m away from the roof line,which tends to provide a good stability state for the rib.For different inter-band rock positions,two ways of controlling rib by increasing supports stiffness and flexible grouting reinforcement are proposed.展开更多
Research on fires at the wildland-urban inter-face(WUI)has generated significant insights and advance-ments across various fields of study.Environmental,agri-culture,and social sciences have played prominent roles in ...Research on fires at the wildland-urban inter-face(WUI)has generated significant insights and advance-ments across various fields of study.Environmental,agri-culture,and social sciences have played prominent roles in understanding the impacts of fires in the environment,in protecting communities,and addressing management challenges.This study aimed to create a database using a text mining technique for global researchers interested in WUI-projects and highlighting the interest of countries in this field.Author’s-Keywords analysis emphasized the dominance of fire science-related terms,especially related to WUI,and identified keyword clusters related to the WUI fire-risk-assessment-system-“exposure”,“danger”,and“vulnerability”within wildfire research.Trends over the past decade showcase shifting research interests with a growing focus on WUI fires,while regional variations highlighted that the“exposure”keyword cluster received greater atten-tion in the southern Europe and South America.However,vulnerability keywords have relatively a lower representation across all regions.The analysis underscores the interdisci-plinary nature of WUI research and emphasizes the need for targeted approaches to address the unique challenges of the wildland-urban interface.Overall,this study provides valu-able insights for researchers and serves as a foundation for further collaboration in this field through the understanding of the trends over recent years and in different regions.展开更多
Deep-sea sediment disturbance may occur when collecting polymetallic nodules,resulting in the creation of plumes that could have a negative impact on the ecological environment.This study aims to investigate the poten...Deep-sea sediment disturbance may occur when collecting polymetallic nodules,resulting in the creation of plumes that could have a negative impact on the ecological environment.This study aims to investigate the potential solution of using polyaluminum chloride(PAC)in the water jet.The effects of PAC are examined through a self-designed simulation system for deep-sea polymetallic nodule collection and sediment samples from a potential deep-sea mining area.The experimental results showed that the optimal PAC dose was found to be 0.75 g/L.Compared with the test conditions without the addition of PAC,the presence of PAC leads to a reduction in volume,lower characteristic turbidity,smaller diffusion velocity,and shorter settling time of the plume.This indicates that PAC inhibits the entire development process of the plume.The addition of PAC leads to the flocculation of mm-sized particles,resulting in the formation of cm-sized flocs.The flocculation of particles decreases the rate of erosion on the seabed by around 30%.This reduction in erosion helps to decrease the formation of plumes.Additionally,when the size of suspended particles increases,it reduces the scale at which they diffuse.Furthermore,the settling velocity of flocs(around 10^(-2) m/s)is much higher that of compared to sediment particles(around 10^(-5) m/s),which effectively reduces the amount of time the plume remains in suspension.展开更多
Salt caverns are extensively utilized for storing various substances such as fossil energy,hydrogen,compressed air,nuclear waste,and industrial solid waste.In China,when the salt cavern is leached through single-well ...Salt caverns are extensively utilized for storing various substances such as fossil energy,hydrogen,compressed air,nuclear waste,and industrial solid waste.In China,when the salt cavern is leached through single-well water solution mining with oil as a cushion,engineering challenges arise with the leaching tubing,leading to issues like damage and instability.These problems significantly hinder the progress of cavern construction and the control of cavern shape.The primary cause of this is the flowinduced vibration instability of leaching tubing within a confined space,which results in severe bending or damage to the tubing.This study presents a model experimental investigation on the dynamic characteristics of leaching tubing using a self-developed liquid-solid coupling physical model experiment apparatus.The experiment utilizes a silicone-rubber pipe(SRP)and a polycarbonate pipe(PCP)to examine the effects of various factors on the dynamic stability of cantilevered pipes conveying fluid.These factors include external space constraint,flexural rigidity,medium outside the pipe,overhanging length,and end conditions.The experiments reveal four dynamic response phenomena:water hammer,static buckling,chaotic motion,and flutter instability.The study further demonstrates that the length of the external space constraint has a direct impact on the flutter critical flow velocity of the cantilevered pipe conveying fluid.Additionally,the flutter critical flow velocity is influenced by the end conditions and different external media.展开更多
Achieving low-carbon development in the mining sector is fundamental for global carbon emissions abatement,especially considering the growing demand for mineral resources.Currently,the energy foot-print of mines emerg...Achieving low-carbon development in the mining sector is fundamental for global carbon emissions abatement,especially considering the growing demand for mineral resources.Currently,the energy foot-print of mines emerges as the main carbon contributor.While cleaner energy sources have the potential for reducing emissions,transitioning to these sources remains challenging.This study presents a practical CO_(2)mitigation strategy for underground mining by integrating bacteria into shotcrete to enhance exca-vation.The findings demonstrate that bacteria can capture CO_(2)from the atmosphere,thereby increasing the carbonation reactions.X-ray diffraction(XRD),scanning electron microscope(SEM)and energy dis-persive spectrometer(EDS)analysis shows the captured CO_(2)present in the forms of calcite,vaterite,and aragonite.The formed carbonates intermingled with the precipitated calcium-silicate-hydrate(C-S-H)at relatively low bacteria additions,densifying the cementitious matrix and improving the mechan-ical properties.However,high bacteria concentrations lead to excess carbonates that consume C-S-H pre-cipitation,counteracting the benefits of carbonation and reducing mechanical strength.Optimal results were achieved with 0.3%bacteria by mass fraction,potentially mitigating 0.34 kg/m^(2)of CO_(2),which is approximately equivalent 567 g of CO_(2)absorbed by 1 g of bacteria based on the effectiveness demon-strated in this study.These findings are crucial for advancing emissions control in mining and supporting climate goals outlined in the Paris Agreement.展开更多
Objective To explore the medication rules of traditional Chinese medicine(TCM)and mechanism of action of hub herb pairs for treating insomnia.Methods Totally 104 prescriptions were statistically analyzed.The associati...Objective To explore the medication rules of traditional Chinese medicine(TCM)and mechanism of action of hub herb pairs for treating insomnia.Methods Totally 104 prescriptions were statistically analyzed.The association rule algorithm was applied to mine the hub herb pairs.Network pharmacology was utilized to analyze the mechanism of the hub herb pairs,while molecular docking was applied to simulate the interaction between receptors and herb molecules,thereby predicting their binding affinities.Results The most frequently used herbs in TCM prescriptions for treating insomnia included Semen Ziziphi Spinosae,Radix Glycyrrhizae,Radix et Rhizoma Ginseng,and Poria cum Radix Pini.Among them,the most commonly used were the supplementing herbs,followed by heat-clearing,mind-calming,and exterior-releasing ones,with their properties of warm and cold,flavors of sweet,Pungent,and bitter,and meridian tropisms of liver,lungs,spleen,kidneys,heart,and stomach.The hub herb pairs based on the association rules included Radix Astragali-Radix et Rhizoma Ginseng,Rhizoma Chuanxiong-Radix Glycyrrhizae,Seman Platycladi-Semen Ziziphi Spinosae,Pericarpium Citri Reticulatae-Radix Glycyrrhizae,Radix Polygalae-Semen Ziziphi Spinosae,and Radix Astragali-Semen Ziziphi Spinosae.Network pharmacology revealed that the cAMP signaling pathway might play a key role in treating insomnia synergistically with HIF-1 signaling pathway,prolactin signaling pathway,chemical carcinogenesis receptor activation,and PI3K-Akt signaling pathway.Molecular docking indicated that there was good binding between the active ingredients of the hub herb pairs and the hub targets.Conclusions This study identified six hub herb pairs for treating insomnia in TCM.These hub herb pairs may synergistically treat insomnia with HIF-1 signaling pathway,prolactin signaling pathway,chemical carcinogenesis receptor activation,and PI3K-Akt signaling pathway through the cAMP signaling pathway.展开更多
The sublevel top coal caving(SLTCC)mining technology is extensively employed in steeply inclined thick coal seams.Because of the typical characteristics of the short coal face in this mining method,a signifi-cant port...The sublevel top coal caving(SLTCC)mining technology is extensively employed in steeply inclined thick coal seams.Because of the typical characteristics of the short coal face in this mining method,a signifi-cant portion of the top coal is lost at the face end.For reducing the coal loss,the partially reverse drawing technique(PRDT)is proposed as a novel top coal drawing technique.Meanwhile,based on the Bergmark-Roos model(B-R model),a theoretical method for calculating the recovery ratio of top coal based on the top coal boundary equation and residual top coal amount is proposed.The mechanism of PRDT to reduce top coal loss at the face end is revealed by comparing with single-round sequential drawing technique(SSDT).Physical experiments and in-site observation data were used to verify the theoretical model.The results show that PRDT can effectively reduce the amount of residual coal near the roof by optimizing the shape characteristics of top coal boundary.Suggestions for improve recovery ratio in Wudong Coal Mine were given based on its face parameters.展开更多
It is of great significance to improve the efficiency of railway production and operation by realizing the fault knowledge association through the efficient data mining algorithm.However,high utility quantitative freq...It is of great significance to improve the efficiency of railway production and operation by realizing the fault knowledge association through the efficient data mining algorithm.However,high utility quantitative frequent pattern mining algorithms in the field of data mining still suffer from the problems of low time-memory performance and are not easy to scale up.In the context of such needs,we propose a related degree-based frequent pattern mining algorithm,named Related High Utility Quantitative Item set Mining(RHUQI-Miner),to enable the effective mining of railway fault data.The algorithm constructs the item-related degree structure of fault data and gives a pruning optimization strategy to find frequent patterns with higher related degrees,reducing redundancy and invalid frequent patterns.Subsequently,it uses the fixed pattern length strategy to modify the utility information of the item in the mining process so that the algorithm can control the length of the output frequent pattern according to the actual data situation and further improve the performance and practicability of the algorithm.The experimental results on the real fault dataset show that RHUQI-Miner can effectively reduce the time and memory consumption in the mining process,thus providing data support for differentiated and precise maintenance strategies.展开更多
An intrusion detection (ID) model is proposed based on the fuzzy data mining method. A major difficulty of anomaly ID is that patterns of the normal behavior change with time. In addition, an actual intrusion with a...An intrusion detection (ID) model is proposed based on the fuzzy data mining method. A major difficulty of anomaly ID is that patterns of the normal behavior change with time. In addition, an actual intrusion with a small deviation may match normal patterns. So the intrusion behavior cannot be detected by the detection system.To solve the problem, fuzzy data mining technique is utilized to extract patterns representing the normal behavior of a network. A set of fuzzy association rules mined from the network data are shown as a model of “normal behaviors”. To detect anomalous behaviors, fuzzy association rules are generated from new audit data and the similarity with sets mined from “normal” data is computed. If the similarity values are lower than a threshold value,an alarm is given. Furthermore, genetic algorithms are used to adjust the fuzzy membership functions and to select an appropriate set of features.展开更多
Coal is an essential fossil fuel in China; however, coal mining and its utilization are being under the increasing pressure from ecological and environmental protection. Therefore, the consulting project "Technic...Coal is an essential fossil fuel in China; however, coal mining and its utilization are being under the increasing pressure from ecological and environmental protection. Therefore, the consulting project "Technical Revolution in Ecological and Efficient Coal Mining and Utilization & Intelligence and Diverse Coordination of Coal-based Energy System," initiated by Chinese Academy of Engineering, puts forward three stages(3.0, 4.0 and 5.0) of China's coal industry development strategy. Aimed at "reduced staff,ultra-low ecological damage, and emission level near to natural gas," breakthroughs should be achieved in the following three key technologies during the China Coal Industry 3.0 stage(2016–2025): including intelligent coal mining, ecological mining, ultra-low emission and environmental protection. This paper focuses on the development trends of the China Coal Industry 3.0 and its support for China Coal Industry 4.0 and 5.0 is analyzed and prospected as well, which may offer technical assistance and strategy orientation for realizing the transformation from traditional coal energy to clean energy.展开更多
During the development of hot dry rock,the research on thermal fatigue damage caused by thermal shock of cold and heat cycles is the basis that ensures the long-term utilization of geothermal resources,but there are n...During the development of hot dry rock,the research on thermal fatigue damage caused by thermal shock of cold and heat cycles is the basis that ensures the long-term utilization of geothermal resources,but there are not enough relevant studies at present.Based on this,the thermal damage tests of granite at different temperatures(250,350,450°C)and quenching cycles(1,5,10,15 cycles)were carried out.Preliminary reveals the damage mechanism and heat transfer law of the quenching cycle effect on hot dry rock.The results show that with the increase of temperature and cycles,the uneven thermal expansion of minerals and the thermal shock caused by quenching promote the crack development of granite,resulting in the decrease of P-wave velocity,thermal conductivity and uniaxial compressive strength of granite.Meanwhile,the COMSOL was used to simulate the heat transfer of hot dry rock under different heat treatment conditions.It concluded that the increase in the number of quenching cycles reduced the heat transfer capacity of the granite,especially more than 10 quenching cycles,which also reflects that the thermal fatigue damage leads to a longer time for the temperature recovery of the hot dry rock mass.In addition,the three-dimensional nonlinear fitting relationship among thermal conductivity,temperature and cycle number was established for the first time,which can better reveal the change rule of thermal conductivity after quenching thermal fatigue effect of hot dry rock.The research results provide theoretical support for hot dry rock reservoir reconstruction and production efficiency evaluation.展开更多
This paper highlights the role of automation technologies for improving the safety, productivity, and environmental sustainability of underground coal mining processes. This is accomplished by reviewing the impact tha...This paper highlights the role of automation technologies for improving the safety, productivity, and environmental sustainability of underground coal mining processes. This is accomplished by reviewing the impact that the introduction of automation technology has made through the longwall shearer automation research program of Longwall Automation Steering Committee(LASC). This result has been achieved through close integration of sensing, processing, and control technologies into the longwall mining process. Key to the success of the automation solution has been the development of new sensing methods to accurately measure the location of longwall equipment and the spatial configuration of coal seam geology. The relevance of system interoperability and open communications standards for facilitating effective automation is also discussed. Importantly, the insights gained through the longwall automation development process are now leading to new technology transfer activity to benefit other underground mining processes.展开更多
The environmental challenges from coal mining include coal mine accidents,land subsidence,damage to the water environment,mining waste disposal and air pollution.These are either environmental pollution or landscape c...The environmental challenges from coal mining include coal mine accidents,land subsidence,damage to the water environment,mining waste disposal and air pollution.These are either environmental pollution or landscape change.A conceptual framework for solving mine environmental issues is proposed.Clean processes,or remediation measures,are designed to address environmental pollution.Restoration measures are proposed to handle landscape change.The total methane drainage from 56 Chinese high methane concentration coal mines is about 101.94 million cubic meters.Of this methane,19.32 million,35.58 million and 6.97 million cubic meters are utilized for electricity generation,civil fuel supplies and other industrial purposes,respectively.About 39% of the methane is emitted into the atmosphere.The production of coal mining wastes can be decreased 10% by reuse of mining wastes as underground fills,or by using the waste as fuel for power plants or for raw material to make bricks or other infrastructure materials.The proper use of mined land must be decided in terms of local physical and socio-economical conditions.In European countries more than 50% of previously mined lands are reclaimed as forest or grass lands.However,in China more than 70% of the mined lands are reclaimed for agricultural purposes because the large population and a shortage of farmlands make this necessary.Reconstruction of rural communities or native residential improvement is one environmental problem arising from mining.We suggest two ways to reconstruct a farmer's house in China.展开更多
While the fully-mechanized longwall mining technology was employed in a shallow seam under a room mining goaf and overlained by thin bedrock and thick loose sands, the roadway pillars in the abandoned room mining goaf...While the fully-mechanized longwall mining technology was employed in a shallow seam under a room mining goaf and overlained by thin bedrock and thick loose sands, the roadway pillars in the abandoned room mining goaf were in a stress-concentrated state, which may cause abnormal roof weighting, violent ground pressure behaviours, even roof fall and hydraulic support crushed(HSC) accidents. In this case,longwall mining safety and efficiency were seriously challenged. Based on the HSC accidents occurred during the longwall mining of 3-1-2 seam, which locates under the intersection zone of roadway pillars in the room mining goaf of 3-1-1 seam, this paper employed ground rock mechanics to analyse the overlying strata structure movement rules and presented the main influence factors and determination methods for the hydraulic support working resistance. The FLAC3 D software was used to simulate the overlying strata stress and plastic zone distribution characteristics. Field observation was implemented to contrastively analyse the hydraulic support working resistance distribution rules under the roadway pillars in strike direction, normal room mining goaf, roadway pillars in dip direction and intersection zone of roadway pillars. The results indicate that the key strata break along with rotations and reactions of the coal pillars deliver a larger concentrated load to the hydraulic support under intersection zone of roadway pillars than other conditions. The ‘‘overburden strata-key strata-roadway pillars-immediate roof" integrated load has exceeded the yield load that leads to HSC accidents. Findings in HSC mechanism provide a reasonable basis for shallow seam mining, and have important significance for the implementation of safe and efficient mining.展开更多
Non-pillar mining,top-coal caving and protected coal seam mining are the most popular mining methods in coal exploitation,and the different mining layouts will change the stress state and failure mechanism of coal in ...Non-pillar mining,top-coal caving and protected coal seam mining are the most popular mining methods in coal exploitation,and the different mining layouts will change the stress state and failure mechanism of coal in front of the working face.In this paper,mining-induced mechanical behaviors under three mining layouts have been simulated in the laboratory to investigate the effects of mining layouts on the deformation and strength of coal.Furthermore,the coal failure mechanism under different mining layouts is analyzed microscopically.The experimental results indicate that the stage characteristics of the coal deformation are obvious.Under the serial action of non-pillar mining,top-coal caving and protected coal seam mining layouts,the values of radial deformation,volume strain and Poisson's ratio increase,while the peak strength and deformation modulus decrease at the same buried depth,and the peak strength under non-pillar mining,top-coal caving and protected coal seam mining is about 3.0,2.5 and 2.0 times of the initial confining pressure,respectively.The results also indicate that the trend of the coal deformation decreases with the increase of the buried depth under the same mining layout,while the strength and deformation modulus increase,and the failure mechanism under three mining layouts is dominated with shear/tensile failure.展开更多
基金financially supported by the National Key R&D Program of China(2022YFF1100301)Major Science and Technology Project of Henan Province(231100310200)+1 种基金National Natural Science Foundation of China(32370426)Yunnan Province Science and Technology Department(202305AH340005),and Dr Plant。
文摘Medicinal and dietary plants provide numerous nutritional and functional compounds and also have various potential health benefits to humanity.The specific and efficient techniques for accurate identification of nutritional compounds and functional metabolites is crucial for the development of functional foods from medicinal and dietary plants.Nuclear magnetic resonance(NMR)and mass spectrometry(MS)are indispensable and essential technologies that provide an unsurpassed wealth of untargeted identification,quantitative and qualitative analysis,and structural information in the study of food and plant products.In the past decade,the rapid development of modern analytical technology has led to the emergence of new approaches and strategies for natural products discovery.Especially the application of novel NMRand MS-based identification and dereplication strategies aided by artificial intelligence and machine learning algorithms have brought about a significant shift in the natural products discovery process.These developments and changes in the natural products filed have given us insights into how to accurately target and mining nutritional,functional,and bioactive compounds.Thus,we have summarized recent research on novel NMR and MS based strategies and methods focusing on functional compounds,accurate identification and efficient discovery mainly in medicinal and dietary plants.This review could provide a comprehensive perspective for a better understanding of novel strategies and methods based on NMR and MS technologies,which could provide valuable insights and ideas for functional compounds mining.
基金financial support from the National Key Research and Development Program of China (No.2023YFC2907501)the National Natural Science Foundation of China (No.52374106)the Fundamental Research Funds for the Central Universities (No.2023ZKPYNY01)。
文摘In order to improve rib stability,failure criteria and instability mode of a thick coal seam with inter-band rock layer are analysed in this study.A three-dimensional mechanical model is established for the rib by considering the rock layer.A safety factor is defined foy the rib,and it is observed that the safety factor exhibits a positive correlation with the thickness and strength of the inter-band rock.A calculation method for determining critical parameters of the rock layer is presented to ensure the rib stability.It is revealed that incomplete propagation of the fracture at the hard rock constitutes a fundamental prerequisite for ensuring the rib stability.The influence of the position of the inter-band rock in the coal seam on failure mechanism of the rib was thoroughly investigated by developing a series of physical models for the rib at the face area.The best position for the inter-band rock in the coal seam is at a height of 1.5 m away from the roof line,which tends to provide a good stability state for the rib.For different inter-band rock positions,two ways of controlling rib by increasing supports stiffness and flexible grouting reinforcement are proposed.
基金The funding of this research was provided by the Portuguese Foundation for Science and Technology(FCT)in the framework of the House Refuge Project(PCIF/AGT/0109/2018).
文摘Research on fires at the wildland-urban inter-face(WUI)has generated significant insights and advance-ments across various fields of study.Environmental,agri-culture,and social sciences have played prominent roles in understanding the impacts of fires in the environment,in protecting communities,and addressing management challenges.This study aimed to create a database using a text mining technique for global researchers interested in WUI-projects and highlighting the interest of countries in this field.Author’s-Keywords analysis emphasized the dominance of fire science-related terms,especially related to WUI,and identified keyword clusters related to the WUI fire-risk-assessment-system-“exposure”,“danger”,and“vulnerability”within wildfire research.Trends over the past decade showcase shifting research interests with a growing focus on WUI fires,while regional variations highlighted that the“exposure”keyword cluster received greater atten-tion in the southern Europe and South America.However,vulnerability keywords have relatively a lower representation across all regions.The analysis underscores the interdisci-plinary nature of WUI research and emphasizes the need for targeted approaches to address the unique challenges of the wildland-urban interface.Overall,this study provides valu-able insights for researchers and serves as a foundation for further collaboration in this field through the understanding of the trends over recent years and in different regions.
基金supported by the National Natural Science Foundation of China(Nos.52225107,U2106224,U1906234,51822904,and U1706223)the Fundamental Research Funds for the Central Universities(No.202041004)
文摘Deep-sea sediment disturbance may occur when collecting polymetallic nodules,resulting in the creation of plumes that could have a negative impact on the ecological environment.This study aims to investigate the potential solution of using polyaluminum chloride(PAC)in the water jet.The effects of PAC are examined through a self-designed simulation system for deep-sea polymetallic nodule collection and sediment samples from a potential deep-sea mining area.The experimental results showed that the optimal PAC dose was found to be 0.75 g/L.Compared with the test conditions without the addition of PAC,the presence of PAC leads to a reduction in volume,lower characteristic turbidity,smaller diffusion velocity,and shorter settling time of the plume.This indicates that PAC inhibits the entire development process of the plume.The addition of PAC leads to the flocculation of mm-sized particles,resulting in the formation of cm-sized flocs.The flocculation of particles decreases the rate of erosion on the seabed by around 30%.This reduction in erosion helps to decrease the formation of plumes.Additionally,when the size of suspended particles increases,it reduces the scale at which they diffuse.Furthermore,the settling velocity of flocs(around 10^(-2) m/s)is much higher that of compared to sediment particles(around 10^(-5) m/s),which effectively reduces the amount of time the plume remains in suspension.
基金financial support received from the Open Research Fund of the State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences (Grant No.Z019011)the Shandong Provincial Natural Science Foundation (Grant No.ZR2020QE112)+1 种基金the National Natural Science Foundation of China (No.51874273)the Excellent Young Scientists Fund Program of National Natural Science Foundation of China (No.52122403)。
文摘Salt caverns are extensively utilized for storing various substances such as fossil energy,hydrogen,compressed air,nuclear waste,and industrial solid waste.In China,when the salt cavern is leached through single-well water solution mining with oil as a cushion,engineering challenges arise with the leaching tubing,leading to issues like damage and instability.These problems significantly hinder the progress of cavern construction and the control of cavern shape.The primary cause of this is the flowinduced vibration instability of leaching tubing within a confined space,which results in severe bending or damage to the tubing.This study presents a model experimental investigation on the dynamic characteristics of leaching tubing using a self-developed liquid-solid coupling physical model experiment apparatus.The experiment utilizes a silicone-rubber pipe(SRP)and a polycarbonate pipe(PCP)to examine the effects of various factors on the dynamic stability of cantilevered pipes conveying fluid.These factors include external space constraint,flexural rigidity,medium outside the pipe,overhanging length,and end conditions.The experiments reveal four dynamic response phenomena:water hammer,static buckling,chaotic motion,and flutter instability.The study further demonstrates that the length of the external space constraint has a direct impact on the flutter critical flow velocity of the cantilevered pipe conveying fluid.Additionally,the flutter critical flow velocity is influenced by the end conditions and different external media.
基金funded by the National Natural Science Foundation of China(Nos.52274151 and 552104156)the 14th Five Years Key Programs for Science and Technology Development of China(No.2021YFC2900400).
文摘Achieving low-carbon development in the mining sector is fundamental for global carbon emissions abatement,especially considering the growing demand for mineral resources.Currently,the energy foot-print of mines emerges as the main carbon contributor.While cleaner energy sources have the potential for reducing emissions,transitioning to these sources remains challenging.This study presents a practical CO_(2)mitigation strategy for underground mining by integrating bacteria into shotcrete to enhance exca-vation.The findings demonstrate that bacteria can capture CO_(2)from the atmosphere,thereby increasing the carbonation reactions.X-ray diffraction(XRD),scanning electron microscope(SEM)and energy dis-persive spectrometer(EDS)analysis shows the captured CO_(2)present in the forms of calcite,vaterite,and aragonite.The formed carbonates intermingled with the precipitated calcium-silicate-hydrate(C-S-H)at relatively low bacteria additions,densifying the cementitious matrix and improving the mechan-ical properties.However,high bacteria concentrations lead to excess carbonates that consume C-S-H pre-cipitation,counteracting the benefits of carbonation and reducing mechanical strength.Optimal results were achieved with 0.3%bacteria by mass fraction,potentially mitigating 0.34 kg/m^(2)of CO_(2),which is approximately equivalent 567 g of CO_(2)absorbed by 1 g of bacteria based on the effectiveness demon-strated in this study.These findings are crucial for advancing emissions control in mining and supporting climate goals outlined in the Paris Agreement.
基金National Natural Science Foundation of China(82360905)Gansu Provincial University Teachers'Innovation Fund Projects(2023A-092 and 2024B-109).
文摘Objective To explore the medication rules of traditional Chinese medicine(TCM)and mechanism of action of hub herb pairs for treating insomnia.Methods Totally 104 prescriptions were statistically analyzed.The association rule algorithm was applied to mine the hub herb pairs.Network pharmacology was utilized to analyze the mechanism of the hub herb pairs,while molecular docking was applied to simulate the interaction between receptors and herb molecules,thereby predicting their binding affinities.Results The most frequently used herbs in TCM prescriptions for treating insomnia included Semen Ziziphi Spinosae,Radix Glycyrrhizae,Radix et Rhizoma Ginseng,and Poria cum Radix Pini.Among them,the most commonly used were the supplementing herbs,followed by heat-clearing,mind-calming,and exterior-releasing ones,with their properties of warm and cold,flavors of sweet,Pungent,and bitter,and meridian tropisms of liver,lungs,spleen,kidneys,heart,and stomach.The hub herb pairs based on the association rules included Radix Astragali-Radix et Rhizoma Ginseng,Rhizoma Chuanxiong-Radix Glycyrrhizae,Seman Platycladi-Semen Ziziphi Spinosae,Pericarpium Citri Reticulatae-Radix Glycyrrhizae,Radix Polygalae-Semen Ziziphi Spinosae,and Radix Astragali-Semen Ziziphi Spinosae.Network pharmacology revealed that the cAMP signaling pathway might play a key role in treating insomnia synergistically with HIF-1 signaling pathway,prolactin signaling pathway,chemical carcinogenesis receptor activation,and PI3K-Akt signaling pathway.Molecular docking indicated that there was good binding between the active ingredients of the hub herb pairs and the hub targets.Conclusions This study identified six hub herb pairs for treating insomnia in TCM.These hub herb pairs may synergistically treat insomnia with HIF-1 signaling pathway,prolactin signaling pathway,chemical carcinogenesis receptor activation,and PI3K-Akt signaling pathway through the cAMP signaling pathway.
基金supported by the Beijing Natural Science Foundation(No.2232059)the National Natural Science Foundation of China(Nos.52121003,52374148,52204163 and 51934008)+1 种基金the Fundamental Research Funds for the Central Universities(Nos.2023JCCXNY04 and 2023YQTD02)the Open Fund of Key laboratory of Xinjiang Coal Resources Green Mining,Ministry of Education(No.KLXGY-KB2408)。
文摘The sublevel top coal caving(SLTCC)mining technology is extensively employed in steeply inclined thick coal seams.Because of the typical characteristics of the short coal face in this mining method,a signifi-cant portion of the top coal is lost at the face end.For reducing the coal loss,the partially reverse drawing technique(PRDT)is proposed as a novel top coal drawing technique.Meanwhile,based on the Bergmark-Roos model(B-R model),a theoretical method for calculating the recovery ratio of top coal based on the top coal boundary equation and residual top coal amount is proposed.The mechanism of PRDT to reduce top coal loss at the face end is revealed by comparing with single-round sequential drawing technique(SSDT).Physical experiments and in-site observation data were used to verify the theoretical model.The results show that PRDT can effectively reduce the amount of residual coal near the roof by optimizing the shape characteristics of top coal boundary.Suggestions for improve recovery ratio in Wudong Coal Mine were given based on its face parameters.
基金supported by the Research on Key Technologies and Typical Applications of Big Data in Railway Production and Operation(P2023S006)the Fundamental Research Funds for the Central Universities(2022JBZY023).
文摘It is of great significance to improve the efficiency of railway production and operation by realizing the fault knowledge association through the efficient data mining algorithm.However,high utility quantitative frequent pattern mining algorithms in the field of data mining still suffer from the problems of low time-memory performance and are not easy to scale up.In the context of such needs,we propose a related degree-based frequent pattern mining algorithm,named Related High Utility Quantitative Item set Mining(RHUQI-Miner),to enable the effective mining of railway fault data.The algorithm constructs the item-related degree structure of fault data and gives a pruning optimization strategy to find frequent patterns with higher related degrees,reducing redundancy and invalid frequent patterns.Subsequently,it uses the fixed pattern length strategy to modify the utility information of the item in the mining process so that the algorithm can control the length of the output frequent pattern according to the actual data situation and further improve the performance and practicability of the algorithm.The experimental results on the real fault dataset show that RHUQI-Miner can effectively reduce the time and memory consumption in the mining process,thus providing data support for differentiated and precise maintenance strategies.
文摘An intrusion detection (ID) model is proposed based on the fuzzy data mining method. A major difficulty of anomaly ID is that patterns of the normal behavior change with time. In addition, an actual intrusion with a small deviation may match normal patterns. So the intrusion behavior cannot be detected by the detection system.To solve the problem, fuzzy data mining technique is utilized to extract patterns representing the normal behavior of a network. A set of fuzzy association rules mined from the network data are shown as a model of “normal behaviors”. To detect anomalous behaviors, fuzzy association rules are generated from new audit data and the similarity with sets mined from “normal” data is computed. If the similarity values are lower than a threshold value,an alarm is given. Furthermore, genetic algorithms are used to adjust the fuzzy membership functions and to select an appropriate set of features.
基金supported by the Major State Basic Research Development Program of China (No. 2014CB046302)
文摘Coal is an essential fossil fuel in China; however, coal mining and its utilization are being under the increasing pressure from ecological and environmental protection. Therefore, the consulting project "Technical Revolution in Ecological and Efficient Coal Mining and Utilization & Intelligence and Diverse Coordination of Coal-based Energy System," initiated by Chinese Academy of Engineering, puts forward three stages(3.0, 4.0 and 5.0) of China's coal industry development strategy. Aimed at "reduced staff,ultra-low ecological damage, and emission level near to natural gas," breakthroughs should be achieved in the following three key technologies during the China Coal Industry 3.0 stage(2016–2025): including intelligent coal mining, ecological mining, ultra-low emission and environmental protection. This paper focuses on the development trends of the China Coal Industry 3.0 and its support for China Coal Industry 4.0 and 5.0 is analyzed and prospected as well, which may offer technical assistance and strategy orientation for realizing the transformation from traditional coal energy to clean energy.
基金financially supported by National Natural Science Foundation of China(Nos.U2013603,52004167,52078477,51827901,and U1965203)Sichuan International Technological innovation Cooperation Project(No.2018HH0159)。
文摘During the development of hot dry rock,the research on thermal fatigue damage caused by thermal shock of cold and heat cycles is the basis that ensures the long-term utilization of geothermal resources,but there are not enough relevant studies at present.Based on this,the thermal damage tests of granite at different temperatures(250,350,450°C)and quenching cycles(1,5,10,15 cycles)were carried out.Preliminary reveals the damage mechanism and heat transfer law of the quenching cycle effect on hot dry rock.The results show that with the increase of temperature and cycles,the uneven thermal expansion of minerals and the thermal shock caused by quenching promote the crack development of granite,resulting in the decrease of P-wave velocity,thermal conductivity and uniaxial compressive strength of granite.Meanwhile,the COMSOL was used to simulate the heat transfer of hot dry rock under different heat treatment conditions.It concluded that the increase in the number of quenching cycles reduced the heat transfer capacity of the granite,especially more than 10 quenching cycles,which also reflects that the thermal fatigue damage leads to a longer time for the temperature recovery of the hot dry rock mass.In addition,the three-dimensional nonlinear fitting relationship among thermal conductivity,temperature and cycle number was established for the first time,which can better reveal the change rule of thermal conductivity after quenching thermal fatigue effect of hot dry rock.The research results provide theoretical support for hot dry rock reservoir reconstruction and production efficiency evaluation.
文摘This paper highlights the role of automation technologies for improving the safety, productivity, and environmental sustainability of underground coal mining processes. This is accomplished by reviewing the impact that the introduction of automation technology has made through the longwall shearer automation research program of Longwall Automation Steering Committee(LASC). This result has been achieved through close integration of sensing, processing, and control technologies into the longwall mining process. Key to the success of the automation solution has been the development of new sensing methods to accurately measure the location of longwall equipment and the spatial configuration of coal seam geology. The relevance of system interoperability and open communications standards for facilitating effective automation is also discussed. Importantly, the insights gained through the longwall automation development process are now leading to new technology transfer activity to benefit other underground mining processes.
基金supported by the 111 Project (No.B07028)the Project for New Century Talents of Ministry of Education of China (No.NCET-04-0487)supported by the Natural Science Foundation of Jiangsu Province of China (No.50574095)
文摘The environmental challenges from coal mining include coal mine accidents,land subsidence,damage to the water environment,mining waste disposal and air pollution.These are either environmental pollution or landscape change.A conceptual framework for solving mine environmental issues is proposed.Clean processes,or remediation measures,are designed to address environmental pollution.Restoration measures are proposed to handle landscape change.The total methane drainage from 56 Chinese high methane concentration coal mines is about 101.94 million cubic meters.Of this methane,19.32 million,35.58 million and 6.97 million cubic meters are utilized for electricity generation,civil fuel supplies and other industrial purposes,respectively.About 39% of the methane is emitted into the atmosphere.The production of coal mining wastes can be decreased 10% by reuse of mining wastes as underground fills,or by using the waste as fuel for power plants or for raw material to make bricks or other infrastructure materials.The proper use of mined land must be decided in terms of local physical and socio-economical conditions.In European countries more than 50% of previously mined lands are reclaimed as forest or grass lands.However,in China more than 70% of the mined lands are reclaimed for agricultural purposes because the large population and a shortage of farmlands make this necessary.Reconstruction of rural communities or native residential improvement is one environmental problem arising from mining.We suggest two ways to reconstruct a farmer's house in China.
基金financially supported by the Fundamental Research Funds for the Central Universities of China(NO.2015XKMS002)the Priority Academic Program Development of Jiangsu Higher Education Institutions of Chinagratefully acknowledge financial support of the above-mentioned agencies
文摘While the fully-mechanized longwall mining technology was employed in a shallow seam under a room mining goaf and overlained by thin bedrock and thick loose sands, the roadway pillars in the abandoned room mining goaf were in a stress-concentrated state, which may cause abnormal roof weighting, violent ground pressure behaviours, even roof fall and hydraulic support crushed(HSC) accidents. In this case,longwall mining safety and efficiency were seriously challenged. Based on the HSC accidents occurred during the longwall mining of 3-1-2 seam, which locates under the intersection zone of roadway pillars in the room mining goaf of 3-1-1 seam, this paper employed ground rock mechanics to analyse the overlying strata structure movement rules and presented the main influence factors and determination methods for the hydraulic support working resistance. The FLAC3 D software was used to simulate the overlying strata stress and plastic zone distribution characteristics. Field observation was implemented to contrastively analyse the hydraulic support working resistance distribution rules under the roadway pillars in strike direction, normal room mining goaf, roadway pillars in dip direction and intersection zone of roadway pillars. The results indicate that the key strata break along with rotations and reactions of the coal pillars deliver a larger concentrated load to the hydraulic support under intersection zone of roadway pillars than other conditions. The ‘‘overburden strata-key strata-roadway pillars-immediate roof" integrated load has exceeded the yield load that leads to HSC accidents. Findings in HSC mechanism provide a reasonable basis for shallow seam mining, and have important significance for the implementation of safe and efficient mining.
基金funded by the State Key Basic Research Program of China(No.2011CB201201)the National Key TechnologyR&D Program(No.2008BAB36B07)the National Natural Science Foundation of China(Nos.51134018 and 50674092)
文摘Non-pillar mining,top-coal caving and protected coal seam mining are the most popular mining methods in coal exploitation,and the different mining layouts will change the stress state and failure mechanism of coal in front of the working face.In this paper,mining-induced mechanical behaviors under three mining layouts have been simulated in the laboratory to investigate the effects of mining layouts on the deformation and strength of coal.Furthermore,the coal failure mechanism under different mining layouts is analyzed microscopically.The experimental results indicate that the stage characteristics of the coal deformation are obvious.Under the serial action of non-pillar mining,top-coal caving and protected coal seam mining layouts,the values of radial deformation,volume strain and Poisson's ratio increase,while the peak strength and deformation modulus decrease at the same buried depth,and the peak strength under non-pillar mining,top-coal caving and protected coal seam mining is about 3.0,2.5 and 2.0 times of the initial confining pressure,respectively.The results also indicate that the trend of the coal deformation decreases with the increase of the buried depth under the same mining layout,while the strength and deformation modulus increase,and the failure mechanism under three mining layouts is dominated with shear/tensile failure.