An improved particle swarm optimization (PSO) algorithm based on ensemble technique is presented. The algorithm combines some previous best positions (pbest) of the particles to get an ensemble position (Epbest), whic...An improved particle swarm optimization (PSO) algorithm based on ensemble technique is presented. The algorithm combines some previous best positions (pbest) of the particles to get an ensemble position (Epbest), which is used to replace the global best position (gbest). It is compared with the standard PSO algorithm invented by Kennedy and Eberhart and some improved PSO algorithms based on three different benchmark functions. The simulation results show that the improved PSO based on ensemble technique can get better solutions than the standard PSO and some other improved algorithms under all test cases.展开更多
The previous particle swarm optimizers lack direct mechanism to prevent particles beyond predefined search space, which results in invalid solutions in some special cases. A momentum factor is introduced into the orig...The previous particle swarm optimizers lack direct mechanism to prevent particles beyond predefined search space, which results in invalid solutions in some special cases. A momentum factor is introduced into the original particle swarm optimizer to resolve this problem. Furthermore, in order to accelerate convergence, a new strategy about updating velocities is given. The resulting approach is mromentum-PSO which guarantees that particles are never beyond predefined search space without checking boundary in every iteration. In addition, linearly decreasing wight PSO (LDW-PSO) equipped with a boundary checking strategy is also discussed, which is denoted as LDWBC-PSO. LDW-PSO, LDWBC-PSO and momentum-PSO are compared in optimization on five test functions. The experimental results show that in some special cases LDW-PSO finds invalid solutions and LDWBC-PSO has poor performance, while momentum-PSO not only exhibits good performance but also reduces computational cost for updating velocities.展开更多
狼群算法启发于狼群群体生存智慧,已被用于复杂函数寻优和0-1普通背包问题求解。针对多维背包问题特点,设计了试探装载式的修复机制有效修复和改进人工狼群中的不可行解,改进了传统基于大惩罚参数的目标函数,减小了由于惩罚参数过大而...狼群算法启发于狼群群体生存智慧,已被用于复杂函数寻优和0-1普通背包问题求解。针对多维背包问题特点,设计了试探装载式的修复机制有效修复和改进人工狼群中的不可行解,改进了传统基于大惩罚参数的目标函数,减小了由于惩罚参数过大而导致算法陷入局部最优的风险;并受狼群的繁衍方式的启发,在二进制狼群算法的基础上提出了求解多维背包问题的改进二进制狼群算法(improve binary wolf pack algorithm,IBWPA)。通过求解19组不同规模的典型多维背包算例和与其他算法的对比分析,例证了算法的有效性和计算稳定性。展开更多
文摘An improved particle swarm optimization (PSO) algorithm based on ensemble technique is presented. The algorithm combines some previous best positions (pbest) of the particles to get an ensemble position (Epbest), which is used to replace the global best position (gbest). It is compared with the standard PSO algorithm invented by Kennedy and Eberhart and some improved PSO algorithms based on three different benchmark functions. The simulation results show that the improved PSO based on ensemble technique can get better solutions than the standard PSO and some other improved algorithms under all test cases.
文摘The previous particle swarm optimizers lack direct mechanism to prevent particles beyond predefined search space, which results in invalid solutions in some special cases. A momentum factor is introduced into the original particle swarm optimizer to resolve this problem. Furthermore, in order to accelerate convergence, a new strategy about updating velocities is given. The resulting approach is mromentum-PSO which guarantees that particles are never beyond predefined search space without checking boundary in every iteration. In addition, linearly decreasing wight PSO (LDW-PSO) equipped with a boundary checking strategy is also discussed, which is denoted as LDWBC-PSO. LDW-PSO, LDWBC-PSO and momentum-PSO are compared in optimization on five test functions. The experimental results show that in some special cases LDW-PSO finds invalid solutions and LDWBC-PSO has poor performance, while momentum-PSO not only exhibits good performance but also reduces computational cost for updating velocities.
文摘狼群算法启发于狼群群体生存智慧,已被用于复杂函数寻优和0-1普通背包问题求解。针对多维背包问题特点,设计了试探装载式的修复机制有效修复和改进人工狼群中的不可行解,改进了传统基于大惩罚参数的目标函数,减小了由于惩罚参数过大而导致算法陷入局部最优的风险;并受狼群的繁衍方式的启发,在二进制狼群算法的基础上提出了求解多维背包问题的改进二进制狼群算法(improve binary wolf pack algorithm,IBWPA)。通过求解19组不同规模的典型多维背包算例和与其他算法的对比分析,例证了算法的有效性和计算稳定性。