期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于去噪自编码器网络特征降维与改进小批优化K均值算法的海量用户用电行为聚类及分析 被引量:11
1
作者 汪颖 杨维 +1 位作者 肖先勇 张姝 《电力自动化设备》 EI CSCD 北大核心 2022年第6期146-153,共8页
海量用户用电特性的挖掘与分析对实现电网与用户间的双向互动具有十分重要的意义。提出一种适用于海量用户用电行为聚类及分析的算法,以降低算法时间复杂度,提升海量用户负荷数据分析效率。提取用户用电行为特征,构建多层去噪自编码网络... 海量用户用电特性的挖掘与分析对实现电网与用户间的双向互动具有十分重要的意义。提出一种适用于海量用户用电行为聚类及分析的算法,以降低算法时间复杂度,提升海量用户负荷数据分析效率。提取用户用电行为特征,构建多层去噪自编码网络,实现多维特征的降维;利用小批优化K均值算法进行聚类分析,并对算法进行初始聚类质心优化与超参数优化的改进以提升算法收敛速度与效果,其中超参数优化利用基于高斯过程的贝叶斯优化算法进行;利用类间分离度和类内内聚度的相关指标对聚类效果进行评价;通过互信息筛选有效聚类特征,实现用户画像。算例结果表明,所提方法在特征优化、聚类效果与收敛速度上均有较好的表现。 展开更多
关键词 用电行为 特征降维 聚类分析 互信息 小批优化K均值算法 超参数优化 贝叶斯优化
在线阅读 下载PDF
基于CSD-ELM的不平衡数据分类算法 被引量:6
2
作者 王大飞 解武杰 董文瀚 《计算机工程》 CAS CSCD 北大核心 2019年第11期54-61,共8页
基于代价敏感学习的极限学习机(ELM)算法在处理不平衡数据分类问题时,未考虑不同类别样本的分布特点以及同一类别中各样本的重要性对分类结果的影响。为此,提出基于样本数量比例的错分惩罚因子设置方法,并基于Mini-batch k-means聚类与... 基于代价敏感学习的极限学习机(ELM)算法在处理不平衡数据分类问题时,未考虑不同类别样本的分布特点以及同一类别中各样本的重要性对分类结果的影响。为此,提出基于样本数量比例的错分惩罚因子设置方法,并基于Mini-batch k-means聚类与距离测度设计一种类内样本权值确定方案。在此基础上,构建区分正、负类别的隐含层输出矩阵,根据训练样本数与ELM隐含层节点数间的关系,分2种情况计算ELM隐含层与输出层间的连接权值,以降低算法的时间复杂度。实验结果表明,与ELM、WELM等算法相比,该算法的G-mean、F1分类性能指标值均较高。 展开更多
关键词 不平衡数据 极限学习机 代价敏感学习 mini-batch k-means聚类 约束优化理论
在线阅读 下载PDF
一种面向工控联网设备的层次聚类方法 被引量:4
3
作者 曲海阔 张哲宇 +3 位作者 刘扬 孙军 王子博 王佰玲 《现代电子技术》 2022年第23期76-82,共7页
联网设备核查是工业控制系统安全巡检工作的首要任务,而其中设备层次识别对后续获取详细信息至关重要。针对工控系统内各层级联网设备因通信量不均衡而导致识别准确率低的问题,提出一种基于高斯混合模型的层次聚类方法。所提方法融入重... 联网设备核查是工业控制系统安全巡检工作的首要任务,而其中设备层次识别对后续获取详细信息至关重要。针对工控系统内各层级联网设备因通信量不均衡而导致识别准确率低的问题,提出一种基于高斯混合模型的层次聚类方法。所提方法融入重采样的分批处理思想,通过对聚类中心进行重新采样,解决经典K⁃means算法对初始值过度依赖而引起的聚类结果偏离问题;进一步考虑算法的计算资源和运行时效等性能因素,引入训练数据分批处理操作,在保证算法精度的同时,缩短收敛时间,降低内存占用,达到优化算法效率的目的。最终,在一套工控模拟环境的安全水处理数据集上,通过与三个经典的聚类算法进行比较,验证所提方法对工控联网设备层次识别的有效性、准确性和稳定性。 展开更多
关键词 联网设备 层次识别 统计特征 不均衡数据 高斯混合模型 聚类算法 重采样分批处理
在线阅读 下载PDF
卫星遥测数据相关性知识发现方法 被引量:4
4
作者 杨甲森 孟新 王春梅 《国防科技大学学报》 EI CAS CSCD 北大核心 2019年第5期71-78,共8页
为快速发现海量遥测数据中的相关关系,提出一种基于改进最大信息系数(Maximal Information Coefficient,MIC)的遥测数据相关性知识发现方法。以Mini Batch K-Means聚类算法为前驱过程对数据进行网格划分;计算该网格划分下的互信息,并以... 为快速发现海量遥测数据中的相关关系,提出一种基于改进最大信息系数(Maximal Information Coefficient,MIC)的遥测数据相关性知识发现方法。以Mini Batch K-Means聚类算法为前驱过程对数据进行网格划分;计算该网格划分下的互信息,并以信息熵代替原有最大熵对互信息进行归一化矫正得到信息系数;选择不同网格划分下MIC作为变量相关性的测度。采用量子卫星遥测数据进行试验,结果表明:与基于动态规划算法的MIC方法相比,所提方法可有效解决MIC测度偏向多值变量的问题,时间复杂度从O(n^2.4)下降为O(n^1.6),是一种适用于大规模遥测数据相关性分析的有效方法。 展开更多
关键词 mini batch k-means 信息熵 最大信息系数 遥测数据 相关性 量子卫星
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部