期刊文献+
共找到287篇文章
< 1 2 15 >
每页显示 20 50 100
Large-field objective lens for multi-wavelength microscopy at mesoscale and submicron resolution 被引量:2
1
作者 Xin Xu Qin Luo +7 位作者 Jixiang Wang Yahui Song Hong Ye Xin Zhang Yi He Minxuan Sun Ruobing Zhang Guohua Shi 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第6期41-56,共16页
Conventional microscopes designed for submicron resolution in biological research are hindered by a limited field of view,typically around 1 mm.This restriction poses a challenge when attempting to simultaneously anal... Conventional microscopes designed for submicron resolution in biological research are hindered by a limited field of view,typically around 1 mm.This restriction poses a challenge when attempting to simultaneously analyze various parts of a sample,such as different brain areas.In addition,conventional objective lenses struggle to perform consistently across the required range of wavelengths for brain imaging in vivo.Here we present a novel mesoscopic objective lens with an impressive field of view of 8 mm,a numerical aperture of 0.5,and a working wavelength range from 400 to 1000 nm.We achieved a resolution of 0.74μm in fluorescent beads imaging.The versatility of this lens was further demonstrated through high-quality images of mouse brain and kidney sections in a wide-field imaging system,a confocal laser scanning system,and a two-photon imaging system.This mesoscopic objective lens holds immense promise for advancing multi-wavelength imaging of large fields of view at high resolution. 展开更多
关键词 mesoscopic objective lens large field-of-view high resolution MULTI-WAVELENGTH wide-field microscopy confocal laser scanning microscopy
在线阅读 下载PDF
Ultrafast photoemission electron microscopy:A multidimensional probe of nonequilibrium physics
2
作者 戴亚南 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期24-57,共34页
Exploring the realms of physics that extend beyond thermal equilibrium has emerged as a crucial branch of condensed matter physics research.It aims to unravel the intricate processes involving the excitations,interact... Exploring the realms of physics that extend beyond thermal equilibrium has emerged as a crucial branch of condensed matter physics research.It aims to unravel the intricate processes involving the excitations,interactions,and annihilations of quasi-and many-body particles,and ultimately to achieve the manipulation and engineering of exotic non-equilibrium quantum phases on the ultrasmall and ultrafast spatiotemporal scales.Given the inherent complexities arising from many-body dynamics,it therefore seeks a technique that has efficient and diverse detection degrees of freedom to study the underlying physics.By combining high-power femtosecond lasers with real-or momentum-space photoemission electron microscopy(PEEM),imaging excited state phenomena from multiple perspectives,including time,real space,energy,momentum,and spin,can be conveniently achieved,making it a unique technique in studying physics out of equilibrium.In this context,we overview the working principle and technical advances of the PEEM apparatus and the related laser systems,and survey key excited-state phenomena probed through this surface-sensitive methodology,including the ultrafast dynamics of electrons,excitons,plasmons,spins,etc.,in materials ranging from bulk and nano-structured metals and semiconductors to low-dimensional quantum materials.Through this review,one can further envision that time-resolved PEEM will open new avenues for investigating a variety of classical and quantum phenomena in a multidimensional parameter space,offering unprecedented and comprehensive insights into important questions in the field of condensed matter physics. 展开更多
关键词 ultrafast photoemission electron microscopy ultrafast momentum microscopy excited state physics
在线阅读 下载PDF
A review of understanding electrocatalytic reactions in energy conversion and energy storage systems via scanning electrochemical microscopy
3
作者 Jihye Park Jong Hwan Lim +4 位作者 Jin-Hyuk Kang Jiheon Lim Ho Won Jang Hosun Shin Sun Hwa Park 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期155-177,共23页
To address climate change and promote environmental sustainability,electrochemical energy conversion and storage systems emerge as promising alternative to fossil fuels,catering to the escalating demand for energy.Ach... To address climate change and promote environmental sustainability,electrochemical energy conversion and storage systems emerge as promising alternative to fossil fuels,catering to the escalating demand for energy.Achieving optimal energy efficiency and cost competitiveness in these systems requires the strategic design of electrocatalysts,coupled with a thorough comprehension of the underlying mechanisms and degradation behavior occurring during the electrocatalysis processes.Scanning electrochemical microscopy(SECM),an analytical technique for studying surface electrochemically,stands out as a powerful tool offering electrochemical insights.It possesses remarkable spatiotemporal resolution,enabling the visualization of the localized electrochemical activity and surface topography.This review compiles crucial research findings and recent breakthroughs in electrocatalytic processes utilizing the SECM methodology,specifically focusing on applications in electrolysis,fuel cells,and metal–oxygen batteries within the realm of energy conversion and storage systems.Commencing with an overview of each energy system,the review introduces the fundamental principles of SECM,and aiming to provide new perspectives and broadening the scope of applied research by describing the major research categories within SECM. 展开更多
关键词 Scanning electrochemical microscopy ELECTROCATALYST ELECTROCATALYSIS Water splitting Fuel cell Metal-oxygen battery
在线阅读 下载PDF
Revealing the microstructures of metal halide perovskite thin films via advancedtransmission electron microscopy
4
作者 Yeming Xian Xiaoming Wang Yanfa Yan 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期30-41,共12页
Metal halide perovskites (MHPs) are excellent semiconductors that have led to breakthroughs in applications in thinfilmsolar cells, detectors, and light-emitting diodes due to their remarkable optoelectronic propertie... Metal halide perovskites (MHPs) are excellent semiconductors that have led to breakthroughs in applications in thinfilmsolar cells, detectors, and light-emitting diodes due to their remarkable optoelectronic properties and defect tolerance.However, the performance and stability of MHP-based devices are significantly influenced by their microstructures includingthe formation of defects, composition fluctuations, structural inhomogeneity, etc. Transmission electron microscopy(TEM) is a powerful tool for direct observation of microstructure at the atomic-scale resolution and has been used to correlatethe microstructure and performance of MHP-based devices. In this review, we highlight the application of TEMtechniques in revealing the microstructures of MHP thin films at the atomic scale. The results provide critical understandingof the performance of MHP devices and guide the design of strategies for improving the performance and stability ofMHP devices. 展开更多
关键词 PEROVSKITE DEFECT INHOMOGENEITY transmission electron microscopy
在线阅读 下载PDF
Recent progress about transmission electron microscopy characterizations on lithium-ion batteries
5
作者 Yihang Liu Qiuyun Li Ziqiang Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期39-56,I0002,共19页
With the rapid development of portable electronics,new energy vehicles,and smart grids,ion batteries are becoming one of the most widely used energy storage devices,while the safety concern of ion batteries has always... With the rapid development of portable electronics,new energy vehicles,and smart grids,ion batteries are becoming one of the most widely used energy storage devices,while the safety concern of ion batteries has always been an urgent problem to be solved.To develop a safety-guaranteed battery,the characterization of the internal structure is indispensable,where electron microscopy plays a crucial role.Based on this,this paper summarizes the application of transmission electron microscopy(TEM)in battery safety,further concludes and analyzes the aspects of dendrite growth and solid electrolyte interface(SEI)formation that affect the safety of ion batteries,and emphasizes the importance of electron microscopy in battery safety research and the potential of these techniques to promote the future development of this field.These advanced electron microscopy techniques and their prospects are also discussed. 展开更多
关键词 Electron microscopy characterizations Lithium-ion batteries DENDRITES SEI
在线阅读 下载PDF
Investigation of reflection anisotropy induced by micropipe defects on the surface of a 4H-SiC single crystal using scanning anisotropy microscopy
6
作者 黄威 俞金玲 +7 位作者 刘雨 彭燕 王利军 梁平 陈堂胜 徐现刚 刘峰奇 陈涌海 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期630-637,共8页
Optical reflection anisotropy microscopy mappings of micropipe defects on the surface of a 4H-SiC single crystal are studied by the scanning anisotropy microscopy(SAM)system.The reflection anisotropy(RA)image with a&#... Optical reflection anisotropy microscopy mappings of micropipe defects on the surface of a 4H-SiC single crystal are studied by the scanning anisotropy microscopy(SAM)system.The reflection anisotropy(RA)image with a'butterfly pattern'is obtained around the micropipes by SAM.The RA image of the edge dislocations is theoretically simulated based on dislocation theory and the photoelastic principle.By comparing with the Raman spectrum,it is verified that the micropipes consist of edge dislocations.The different patterns of the RA images are due to the different orientations of the Burgers vectors.Besides,the strain distribution of the micropipes is also deduced.One can identify the dislocation type,the direction of the Burgers vector and the optical anisotropy from the RA image by using SAM.Therefore,SAM is an ideal tool to measure the optical anisotropy induced by the strain field around a defect. 展开更多
关键词 scanning anisotropy microscopy SiC reflection anisotropy edge dislocation
在线阅读 下载PDF
Surface evolution of thermoelectric material KCu_(4)Se_(3) explored by scanning tunneling microscopy
7
作者 夏玉敏 马妮 +7 位作者 蔡德胜 刘宇舟 谷易通 于淦 霍思宇 庞文慧 肖翀 秦胜勇 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期422-427,共6页
Novel two-dimensional thermoelectric materials have attracted significant attention in the field of thermoelectric due to their low lattice thermal conductivity.A comprehensive understanding of their microscopic struc... Novel two-dimensional thermoelectric materials have attracted significant attention in the field of thermoelectric due to their low lattice thermal conductivity.A comprehensive understanding of their microscopic structures is crucial for driving further the optimization of materials properties and developing novel functional materials.Here,by using in situ scanning tunneling microscopy,we report the atomic layer evolution and surface reconstruction on the cleaved thermoelectric material KCu_(4)Se_(3) for the first time.We clearly revealed each atomic layer,including the naturally cleaved K atomic layer,the intermediate Se^(2-)atomic layer,and the Se^(-)atomic layer that emerges in the thermodynamic-stable state.Departing from the maj ority of studies that predominantly concentrate on macroscopic measurements of the charge transport,our results reveal the coexistence of potassium disorder and complex reconstructed patterns of selenium,which potentially influences charge carrier and lattice dynamics.These results provide direct insight into the surface microstructures and evolution of KCu_(4)Se_(3),and shed useful light on designing functional materials with superior performance. 展开更多
关键词 THERMOELECTRIC KCu_(4)Se_(3) scanning tunneling microscopy(STM) EVOLUTION
在线阅读 下载PDF
Combining electron microscopy with atomic-scale calculations——A personal perspective
8
作者 Sokrates T.Pantelides 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第12期3-12,共10页
I had the privilege and the pleasure to work closely with Stephen J. Pennycook for about twenty years, having a group of post-docs and Vanderbilt-University graduate students embedded in his electron microscopy group ... I had the privilege and the pleasure to work closely with Stephen J. Pennycook for about twenty years, having a group of post-docs and Vanderbilt-University graduate students embedded in his electron microscopy group at Oak Ridge National Laboratory, spending on average a day per week there. We combined atomic-resolution imaging of materials,electron-energy-loss spectroscopy, and density-functional-theory calculations to explore and elucidate diverse materials phenomena, often resolving long-standing issues. This paper is a personal perspective of that journey, highlighting a few examples to illustrate the power of combining theory and microscopy and closing with an assessment of future prospects. 展开更多
关键词 electron microscopy EELS density-functional-theory calculations
在线阅读 下载PDF
Capturing the non-equilibrium state in light–matter–free-electron interactions through ultrafast transmission electron microscopy
9
作者 汪文韬 孙帅帅 +5 位作者 李俊 郑丁国 黄思远 田焕芳 杨槐馨 李建奇 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期88-101,共14页
Ultrafast transmission electron microscope(UTEM) with the multimodality of time-resolved diffraction, imaging,and spectroscopy provides a unique platform to reveal the fundamental features associated with the interact... Ultrafast transmission electron microscope(UTEM) with the multimodality of time-resolved diffraction, imaging,and spectroscopy provides a unique platform to reveal the fundamental features associated with the interaction between free electrons and matter. In this review, we summarize the principles, instrumentation, and recent developments of the UTEM and its applications in capturing dynamic processes and non-equilibrium transient states. The combination of the transmission electron microscope with a femtosecond laser via the pump–probe method guarantees the high spatiotemporal resolution, allowing the investigation of the transient process in real, reciprocal and energy spaces. Ultrafast structural dynamics can be studied by diffraction and imaging methods, revealing the coherent acoustic phonon generation and photoinduced phase transition process. In the energy dimension, time-resolved electron energy-loss spectroscopy enables the examination of the intrinsic electronic dynamics of materials, while the photon-induced near-field electron microscopy extends the application of the UTEM to the imaging of optical near fields with high real-space resolution. It is noted that light–free-electron interactions have the ability to shape electron wave packets in both longitudinal and transverse directions, showing the potential application in the generation of attosecond electron pulses and vortex electron beams. 展开更多
关键词 ultrafast transmission electron microscopy non-equilibrium structural dynamics photo-induced phase transition free-electron–photon interactions
在线阅读 下载PDF
Assessing the dynamics of O_(2) desorption from cobalt phthalocyanine by in situ electrochemical scanning tunneling microscopy
10
作者 Yu-Qi Wang Yue Feng +1 位作者 Xiang Wang Dong Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期144-148,共5页
We report here the in situ electrochemical scanning tunneling microscopy(ECSTM) study of cobalt phthalocyanine(CoPc)-catalyzed O_(2) evolution reaction(OER) and the dynamics of CoPc-O_(2) dissociation.The self-assembl... We report here the in situ electrochemical scanning tunneling microscopy(ECSTM) study of cobalt phthalocyanine(CoPc)-catalyzed O_(2) evolution reaction(OER) and the dynamics of CoPc-O_(2) dissociation.The self-assembled CoPc monolayer is fabricated on Au(111) substrate and resolved by ECSTM in 0.1 M KOH electrolyte.The OH^(-)adsorption on CoPc prior to OER is observed in ECSTM images.During OER,the generated O_(2) adsorbed on Co Pc is observed in the CoPc monolayer.Potential step experiment is employed to monitor the desorption of OER-generated O_(2) from CoPc,which results in the decreasing surface coverage of CoPc-O_(2) with time.The rate constant of O_(2) desorption is evaluated through data fitting.The insights into the dynamics of Co-O_(2) dissociation at the molecular level via in situ imaging help understand the role of Co-O_(2) in oxygen reduction reaction(ORR) and OER. 展开更多
关键词 Electrochemical scanning tunneling microscopy Oxygen evolution reaction Cobalt phthalocyanine
在线阅读 下载PDF
Non-invasive and low-artifact in vivo brain imaging by using a scanning acoustic-photoacoustic dual mode microscopy 被引量:2
11
作者 Wentian Chen Chao Tao +3 位作者 Zizhong Hu Songtao Yuan Qinghuai Liu Xiaojun Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第4期385-393,共9页
Photoacoustic imaging is a potential candidate for in vivo brain imaging,whereas,its imaging performance could be degraded by inhomogeneous multi-layered media,consisted of scalp and skull.In this work,we propose a lo... Photoacoustic imaging is a potential candidate for in vivo brain imaging,whereas,its imaging performance could be degraded by inhomogeneous multi-layered media,consisted of scalp and skull.In this work,we propose a low-artifact photoacoustic microscopy(LAPAM)scheme,which combines conventional acoustic-resolution photoacoustic microscopy with scanning acoustic microscopy to suppress the reflection artifacts induced by multi-layers.Based on similar propagation characteristics of photoacoustic signals and ultrasonic echoes,the ultrasonic echoes can be employed as the filters to suppress the reflection artifacts to obtain low-artifact photoacoustic images.Phantom experiment is used to validate the effectiveness of this method.Furthermore,LAPAM is applied for in-vivo imaging mouse brain without removing the scalp and the skull.Experimental results show that the proposed method successfully achieves the low-artifact brain image,which demonstrates the practical applicability of LAPAM.This work might improve the photoacoustic imaging quality in many biomedical applications which involve tissues with complex acoustic properties,such as brain imaging through scalp and skull. 展开更多
关键词 photoacoustic microscopy scanning acoustic microscopy NONINVASIVE low-artifact brain imaging
在线阅读 下载PDF
Local thermal conductivity of polycrystalline AlN ceramics measured by scanning thermal microscopy and complementary scanning electron microscopy techniques
12
作者 Zhang Yue-Fei Wang Li +6 位作者 R.Heiderhoff A.K.Geinzer Wei Bin Ji Yuan Han Xiao-Dong L.J.Balk Zhang Ze 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第1期374-379,共6页
The local thermal conductivity of polycrystalline aluminum nitride (A1N) ceramics is measured and imaged by using a scanning thermal microscope (SThM) and complementary scanning electron microscope (SEM) based t... The local thermal conductivity of polycrystalline aluminum nitride (A1N) ceramics is measured and imaged by using a scanning thermal microscope (SThM) and complementary scanning electron microscope (SEM) based techniques at room temperature. The quantitative thermal conductivity for the A1N sample is gained by using a SThM with a spatial resolution of sub-micrometer scale through using the 3w method. A thermal conductivity of 308 W/m-K within grains corresponding to that of high-purity single crystal A1N is obtained. The slight differences in thermal conduction between the adjacent grains are found to result from crystallographic misorientations, as demonstrated in the electron backscattered diffraction. A much lower thermal conductivity at the grain boundary is due to impurities and defects enriched in these sites, as indicated by energy dispersive X-ray spectroscopy. 展开更多
关键词 thermal conductivity A1N ceramics scanning thermal microscopy scanning electronmicroscopy
在线阅读 下载PDF
Observation of Insulin Exocytosis by a Pancreatic β Cell Line with Total Internal Reflection Fluorescence Microscopy 被引量:7
13
作者 Zhao-ying Fu Ya-ping Wang Yu Chen 《Chinese Medical Sciences Journal》 CAS CSCD 2011年第1期60-63,共4页
INSULIN secretion was traditionally measured with biochemical and immunological methods such as enzyme linked immunosorbant assay and radioimmunoassay. However, these methods can only tell the amount of insulin secret... INSULIN secretion was traditionally measured with biochemical and immunological methods such as enzyme linked immunosorbant assay and radioimmunoassay. However, these methods can only tell the amount of insulin secreted; they give no information about the secretion process or mechanism of exocytosis. In recent years, an imaging technique known as total internal reflection fluorescence (TIRF) microscopy has been employed to study insulin secretion. 展开更多
关键词 total internal reflection fluorescence microscopy EXOCYTOSIS INSULIN KISS-AND-RUN
在线阅读 下载PDF
Penetrating view of nano-structures in Aleochara verna spermatheca and flagellum by hard X-ray microscopy 被引量:2
14
作者 张凯 李德娥 +6 位作者 洪友丽 朱佩平 袁清习 黄万霞 高昆 周红章 吴自玉 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第7期410-414,共5页
A penetrating view of the three-dimensional nanostructure of female spermatheca and male flagellum in the species Aleochara verna is obtained with 100-nm resolution using a hard X-ray microscope, which provides a fast... A penetrating view of the three-dimensional nanostructure of female spermatheca and male flagellum in the species Aleochara verna is obtained with 100-nm resolution using a hard X-ray microscope, which provides a fast noninvasive imaging technology for insect morphology. Through introducing Zernike phase contrast and heavy metal staining, images taken at 8 keV displayed sufficient contrast for observing nanoscale fine structures, such as the spermatheca cochleate duct and the subapex of the flagellum, which have some implications for the study of the sperm transfer process and genital evolution in insects. This work shows that both the spatial resolution and the contrast characteristic of hard X-ray microscopy are quite promising for insect morphology studies and, particularly, provide an attractive alternative to the destructive techniques used for investigating internal soft tissues. 展开更多
关键词 X-ray microscopy computed tomography synchrotron radiation source morphology
在线阅读 下载PDF
Super-resolution imaging of low-contrast periodic nanoparticle arrays by microsphere-assisted microscopy 被引量:2
15
作者 Qin-Fang Shi Song-Lin Yang +3 位作者 Yu-Rong Cao Xiao-Qing Wang Tao Chen Yong-Hong Ye 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第4期193-197,共5页
We use the label-free microsphere-assisted microscopy to image low-contrast hexagonally close-packed polystyrene nanoparticle arrays with diameters of 300 and 250 nm.When a nanoparticle array is directly placed on a g... We use the label-free microsphere-assisted microscopy to image low-contrast hexagonally close-packed polystyrene nanoparticle arrays with diameters of 300 and 250 nm.When a nanoparticle array is directly placed on a glass slide,it cannot be distinguished.If a 30-nm-thick Ag film is deposited on the surface of a nanoparticle array,the nanoparticle array with nanoparticle diameters of 300 and 250 nm can be distinguished.In addition,the Talbot effect of the 300-nm-diameter nanoparticle array is also observed.If a nanoparticle sample is assembled on a glass slide deposited with a 30-nm-thick Ag film,an array of 300-nm-diameter nanoparticles can be discerned.We propose that in microsphere-assisted microscopy imaging,the resolution can be improved by the excitation of surface plasmon polaritons(SPPs) on the sample surface or at the sample/substrate interface,and a higher near-field intensity due to the excited SPPs would benefit the resolution improvement.Our study of label-free super-resolution imaging of low-contrast objects will promote the applications of microsphere-assisted microscopy in life sciences. 展开更多
关键词 SUPER-RESOLUTION MICROSPHERE optical microscopy surface plasmon polariton
在线阅读 下载PDF
Quantitative measurement of local elasticity of SiO_x film by atomic force acoustic microscopy 被引量:2
16
作者 何存富 张改梅 吴斌 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第8期449-455,共7页
In this paper the elastic properties of SiOx film are investigated quantitatively for local fixed point and qualitatively for overall area by atomic force acoustic microscopy (AFAM) in which the sample is vibrated a... In this paper the elastic properties of SiOx film are investigated quantitatively for local fixed point and qualitatively for overall area by atomic force acoustic microscopy (AFAM) in which the sample is vibrated at the ultrasonic frequency while the sample surface is touched and scanned with the tip contacting the sample respectively for fixed point and continuous measurements. The SiOx films on the silicon wafers are prepared by the plasma enhanced chemical vapour deposition (PECVD), The local contact stiffness of the tip-SiOx film is calculated from the contact resonance spectrum measured with the atomic force acoustic microscopy. Using the reference approach, indentation modulus of SiOx film for fixed point is obtained. The images of cantilever amplitude are also visualized and analysed when the SiOx surface is excited at a fixed frequency. The results show that the acoustic amplitude images can reflect the elastic properties of the sample. 展开更多
关键词 atomic force acoustic microscopy SiOx film contact resonance frequency local elasticity
在线阅读 下载PDF
Scanning transmission electron microscopy: A review of high angle annular dark field and annular bright field imaging and applications in lithium-ion batteries 被引量:2
17
作者 Yu-Xin Tong Qing-Hua Zhang Lin Gu 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第6期23-34,共12页
Scanning transmission electron microscopy(STEM) has been shown as powerful tools for material characterization,especially after the appearance of aberration-corrector which greatly enhances the resolution of STEM. H... Scanning transmission electron microscopy(STEM) has been shown as powerful tools for material characterization,especially after the appearance of aberration-corrector which greatly enhances the resolution of STEM. High angle annular dark field(HAADF) and annular bright field(ABF) imaging of the aberration-corrected STEM are widely used due to their high-resolution capabilities and easily interpretable image contrasts. However, HAADF mode of the STEM is still limited in detecting light elements due to the weak electron-scattering power. ABF mode of the STEM could detect light and heavy elements simultaneously, providing unprecedented opportunities for probing unknown structures of materials. Atomiclevel structure investigation of materials has been achieved by means of these imaging modes, which is invaluable in many fields for either improving properties of materials or developing new materials. This paper aims to provide a introduction of HAADF and ABF imaging techniques and reviews their applications in characterization of cathode materials, study of electrochemical reaction mechanisms, and exploring the effective design of lithium-ion batteries(LIBs). The future prospects of the STEM are also discussed. 展开更多
关键词 scanning transmission electron microscopy high angle annular dark field annular bright field lithium-ion batteries
在线阅读 下载PDF
Analysis of the injection layer of PTCDA in OLEDs using x-ray photoemission spectroscopy and atomic force microscopy 被引量:2
18
作者 欧谷平 宋珍 +2 位作者 吴有余 陈小强 张福甲 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第6期1296-1300,共5页
Through the investigation of the sample surface and interface of 3, 4, 9, 10-perylenetetracarboxylic dianhydride (PTCDA)/indium-tin-oxide (ITO) thin films using atomic force microscopy, it has been found that the ... Through the investigation of the sample surface and interface of 3, 4, 9, 10-perylenetetracarboxylic dianhydride (PTCDA)/indium-tin-oxide (ITO) thin films using atomic force microscopy, it has been found that the surface is complanate, the growth is uniform and the defects cover basically the surface of ITO. Furthermore, the number of pinholes is small. The analysis of the sample surface and interface further verifies this result by using x-ray photoemission spectroscopy. At the same time, PTCDA is found to have the ability of restraining the diffusion of chemical constituents from ITO to the hole transport layer, which is beneficial to the improvement of the performance and the useful lifetime of the organic light emitting diodes (OLEDs). 展开更多
关键词 atomic force microscopy x-ray photoemission spectroscopy PTCDA/ITO
在线阅读 下载PDF
Characterizing silicon intercalated graphene grown epitaxially on Ir films by atomic force microscopy 被引量:1
19
作者 张勇 王业亮 +1 位作者 阙炎德 高鸿钧 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第7期40-43,共4页
An efficient method based on atomic force microscopy(AFM) has been developed to characterize silicon intercalated graphene grown on single crystalline Ir(111) thin films. By combining analyses of the phase image, ... An efficient method based on atomic force microscopy(AFM) has been developed to characterize silicon intercalated graphene grown on single crystalline Ir(111) thin films. By combining analyses of the phase image, force curves,and friction–force mapping, acquired by AFM, the locations and coverages of graphene and silicon oxide can be well distinguished. We can also demonstrate that silicon atoms have been successfully intercalated between graphene and the substrate. Our method gives an efficient and simple way to characterize graphene samples with interacted atoms and is very helpful for future applications of graphene-based devices in the modern microelectronic industry, where AFM is already widely used. 展开更多
关键词 GRAPHENE SILICON INTERCALATION atomic force microscopy
在线阅读 下载PDF
Orienting the future of bio-macromolecular electron microscopy 被引量:1
20
作者 Fei Sun 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第6期13-22,共10页
With 40 years of development, bio-macromolecule cryo-electron microscopy(cryo-EM) has completed its revolution in terms of resolution and currently plays a highly important role in structural biology study. Accordin... With 40 years of development, bio-macromolecule cryo-electron microscopy(cryo-EM) has completed its revolution in terms of resolution and currently plays a highly important role in structural biology study. According to different specimen states, cryo-EM involves three specific techniques: single-particle analysis(SPA), electron tomography and subtomogram averaging, and electron diffraction. None of these three techniques have realized their full potential for solving the structures of bio-macromolecules and therefore need additional development. In this review, the current existing bottlenecks of cryo-EM SPA are discussed with theoretical analysis, which include the air–water interface during specimen cryo-vitrification, bio-macromolecular conformational heterogeneity, focus gradient within thick specimens, and electron radiation damage. Furthermore, potential solutions of these bottlenecks worthy of further investigation are proposed and discussed. 展开更多
关键词 cryo-electron microscopy air-water interface conformational heterogeneity focus gradient radi- ation damage
在线阅读 下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部