期刊文献+
共找到259篇文章
< 1 2 13 >
每页显示 20 50 100
Study on Microblog Dissemination Law in View ol Forwarding
1
作者 CHEN Xia JIA Yuan GUO Longfei 《China Communications》 SCIE CSCD 2014年第2期128-137,共10页
Forwarding is a major means of information dissemination on the Microblog platform.The article,combining static analysis and dynamic analysis,takes Microblog forwarding as the object of study,and studies the network t... Forwarding is a major means of information dissemination on the Microblog platform.The article,combining static analysis and dynamic analysis,takes Microblog forwarding as the object of study,and studies the network topology of grass-roots Microblog forwarding users.It also studies the correlation between characteristic quantity and forwarding times of Microblog network topology.Furthermore,it conducts modification on virus transmission model,builds and verifies the Microblog forwarding dynamical model.The study finds out that Microblog postings present qute strong dissemination capacity on the initial stage,and some Microblog postings with many forwarding times and long duration of forwarding process due to the dynamic growth of the forwarding user network and the joining of strong nodes make network infection density decrease in some phases. 展开更多
关键词 microblog dissemination law social network dissemination dynamics microblog forwarding
在线阅读 下载PDF
Mining User Interest in Microblogs with a User-Topic Model 被引量:17
2
作者 HE Li JIA Yan +1 位作者 HAN Weihong DING Zhaoyun 《China Communications》 SCIE CSCD 2014年第8期131-144,共14页
Microblogs have become an important platform for people to publish,transform information and acquire knowledge.This paper focuses on the problem of discovering user interest in microblogs.In this paper,we propose a to... Microblogs have become an important platform for people to publish,transform information and acquire knowledge.This paper focuses on the problem of discovering user interest in microblogs.In this paper,we propose a topic mining model based on Latent Dirichlet Allocation(LDA) named user-topic model.For each user,the interests are divided into two parts by different ways to generate the microblogs:original interest and retweet interest.We represent a Gibbs sampling implementation for inference the parameters of our model,and discover not only user's original interest,but also retweet interest.Then we combine original interest and retweet interest to compute interest words for users.Experiments on a dataset of Sina microblogs demonstrate that our model is able to discover user interest effectively and outperforms existing topic models in this task.And we find that original interest and retweet interest are similar and the topics of interest contain user labels.The interest words discovered by our model reflect user labels,but range is much broader. 展开更多
关键词 microblogS topic mining userinterest LDA user-topic model
在线阅读 下载PDF
Analysis of User's Weight in Microblog Network Based on User Influence and Active Degree 被引量:3
3
作者 Jie Lian Yun Liu +2 位作者 Zhen-Jiang Zhang Jun-Jun Cheng Fei Xiong 《Journal of Electronic Science and Technology》 CAS 2012年第4期368-377,共10页
Based on user's in-degree distribution, traditional ranking algorithms of user's weight usually neglect the considerations of the differences among user's followers and the features of user's tweets. In order to a... Based on user's in-degree distribution, traditional ranking algorithms of user's weight usually neglect the considerations of the differences among user's followers and the features of user's tweets. In order to analyze the factors which impact on user's weight, under the analysis of the data collected from SINA Microblog network, this paper discovers that user influence and active degrees are the dominant factors for this issue. The proposed algorithm evaluates user influence by user's follower number, the influence of user's followers and the reciprocity between users. User's active degree is modeled by user's participation and the quality of user's tweets. The models are tested by different data groups to confirm the parameters for the final calculation. Eventually, this paper compares the computational results with the user's ranking order given by the SINA official application. The performance of this algorithm presents a stronger stability on the fluctuant range of the value of user's weight. 展开更多
关键词 HITS algorithm SINA microblog user influence user rank.
在线阅读 下载PDF
Microblog Summarization via Enriching Contextual Features Based on Sentence-Level Semantic Analysis 被引量:1
4
作者 Senlin Luo Qianrou Chen +2 位作者 Jia Guo Ji Zhang Limin Pan 《Journal of Beijing Institute of Technology》 EI CAS 2017年第4期505-516,共12页
A novel microblog summarization approach via enriching contextual features on sentencelevel semantic analysis is proposed in this paper. At first,a Chinese sentential semantic model( CSM) is employed to analyze the ... A novel microblog summarization approach via enriching contextual features on sentencelevel semantic analysis is proposed in this paper. At first,a Chinese sentential semantic model( CSM) is employed to analyze the semantic structure of each microblog sentence. Then,a combination of sentence-level semantic analysis and latent dirichlet allocation is utilized to acquire extra features and related words to enrich the collection of microblog messages. The simlilarites between the two sentences are calculated based on the enriched features. Finally,the semantic weight and relation weight are calculated to select the most informative sentences,which form the final summary for microblog messages. Experimental results demonstrate the advantages of our proposed approach.The results indicate that introducing sentence-level semantic analysis for context enrichment can better represent sentential semantic. The proposed criteria,namely,semantic weight and relation weight enhance summary result. Furthermore,CSM is a useful framework for sentence-level semantic analysis. 展开更多
关键词 microblog summariztion language models language parsing and understanding natural language processing
在线阅读 下载PDF
A comparative study of information diffusion in weblogs and microblogs based on social network analysis 被引量:2
5
作者 Yang ZHANG Wanyang LING 《Chinese Journal of Library and Information Science》 2012年第4期51-66,共16页
Purpose: This paper intends to explore a quantitative method for investigating the characteristics of information diffusion through social media like weblogs and microblogs.By using the social network analysis methods... Purpose: This paper intends to explore a quantitative method for investigating the characteristics of information diffusion through social media like weblogs and microblogs.By using the social network analysis methods,we attempt to analyze the different characteristics of information diffusion in weblogs and microblogs as well as the possible reasons of these differences.Design/methodology/approach: Using the social network analysis methods,this paper carries out an empirical study by taking the Chinese weblogs and microblogs in the field of Library and Information Science(LIS) as the research sample and employing measures such as network density,core/peripheral structure and centrality.Findings: Firstly,both bloggers and microbloggers maintain weak ties,and both of their social networks display a small-world effect. Secondly,compared with weblog users,microblog users are more interconnected,more equal and more capable of developing relationships with people outside their own social networks. Thirdly,the microblogging social network is more conducive to information diffusion than the blogging network,because of their differences in functions and the information flow mechanism. Finally,the communication mode emerged with microblogging,with the characteristics of micro-content,multi-channel information dissemination,dense and decentralized social network and content aggregation,will be one of the trends in the development of the information exchange platform in the future.Research limitations: The sample size needs to be increased so that samples are more representative. Errors may exist during the data collection. Moreover,the individual-level characteristics of the samples as well as the types of information exchanged need to be further studied.Practical implications: This preliminary study explores the characteristics of information diffusion in the network environment and verifies the feasibility of conducting a quantitative analysis of information diffusion through social media. In addition,it provides insight into the characteristics of information diffusion in weblogs and microblogs and the possible reasons of these differences.Originality/value: We have analyzed the characteristics of information diffusion in weblogs and microblogs by using the social network analysis methods. This research will be useful for a quantitative analysis of the underlying mechanisms of information flow through social media in the network environment. 展开更多
关键词 WEBLOG microblog Information diffusion Social network analysis(SNA) Library and information science(LIS
在线阅读 下载PDF
Predicting Stock Using Microblog Moods
6
作者 Danfeng Yan Guang Zhou +2 位作者 Xuan Zhao Yuan Tian Fangchun Yang 《China Communications》 SCIE CSCD 2016年第8期244-257,共14页
Some research work has showed that public mood and stock market price have some relations in some degree. Although it is difficult to clear the relation, the research about the relation between stock market price and ... Some research work has showed that public mood and stock market price have some relations in some degree. Although it is difficult to clear the relation, the research about the relation between stock market price and public mood is interested by some scientists. This paper tries to find the relationship between Chinese stock market and Chinese local Microblog. First, C-POMS(Chinese Profile of Mood States) was proposed to analyze sentiment of Microblog feeds. Then Granger causality test confirmed the relation between C-POMS analysis and price series. SVM and Probabilistic Neural Network were used to make prediction, and experiments show that SVM is better to predict stock market movements than Probabilistic Neural Network. Experiments also indicate that adding certain dimension of C-POMS as the input data will improve the prediction accuracy to 66.667%. Two dimensions to input data leads to the highest accuracy of 71.429%, which is about 20% higher than using only history stock data as the input data. This paper also compared the proposed method with the ROSTEA scores, and concluded that only the proposed method brings more accurate predicts. 展开更多
关键词 stock prediction microblog sentiment analysis
在线阅读 下载PDF
Microblog User Recommendation Based on Particle Swarm Optimization
7
作者 Ling Xing Qiang Ma Ling Jiang 《China Communications》 SCIE CSCD 2017年第5期134-144,共11页
Considering that there exists a strong similarity between behaviors of users and intelligence of swarm of agents,in this paper we propose a novel user recommendation strategy based on particle swarm optimization(PSO)f... Considering that there exists a strong similarity between behaviors of users and intelligence of swarm of agents,in this paper we propose a novel user recommendation strategy based on particle swarm optimization(PSO)for Microblog network. Specifically,a PSO-based algorithm is developed to learn the user influence,where not only the number of followers is incorporated,but also the interactions among users(e.g.,forwarding and commenting on other users' tweets). Three social factors,the influence and the activity of the target user,together with the coherence between users,are fused to improve the performance of proposed recommendation strategy. Experimental results show that,compared to the well-known Page Rank-based algorithm,the proposed strategy performs much better in terms of precision and recall and it can effectively avoid a biased result caused by celebrity effect and zombie fans effect. 展开更多
关键词 particle swarm optimization microblog social network user recommendation user influence
在线阅读 下载PDF
User-Level Sentiment Evolution Analysis in Microblog
8
作者 ZHANG Lumin JIA Yan ZHU Xiang ZHOU Bin HAN Yi 《China Communications》 SCIE CSCD 2014年第12期152-163,共12页
People's attitudes towards public events or products may change overtime,rather than staying on the same state.Understanding how sentiments change overtime is an interesting and important problem with many applica... People's attitudes towards public events or products may change overtime,rather than staying on the same state.Understanding how sentiments change overtime is an interesting and important problem with many applications.Given a certain public event or product,a user's sentiments expressed in microblog stream can be regarded as a vector.In this paper,we define a novel problem of sentiment evolution analysis,and develop a simple yet effective method to detect sentiment evolution in user-level for public events.We firstly propose a multidimensional sentiment model with hierarchical structure to model user's complicate sentiments.Based on this model,we use FP-growth tree algorithm to mine frequent sentiment patterns and perform sentiment evolution analysis by Kullback-Leibler divergence.Moreover,we develop an improve Affinity Propagation algorithm to detect why people change their sentiments.Experimental evaluations on real data sets show that sentiment evolution could be implemented effectively using our method proposed in this article. 展开更多
关键词 data mining sentiment evolution multidimensional sentiment model frequent sentiment patterns microblog
在线阅读 下载PDF
Celebrity and ordinary users: A comparative study of microblog user behaviors on Sina Weibo
9
作者 Xingjun LIU Weijun WANG Jinke WU 《Chinese Journal of Library and Information Science》 2015年第2期83-95,共13页
Purpose: This study aims to investigate and compare celebrity and ordinary users' behaviors on Sina Weibo. Design/methodology/approach: Data was collected from 12,555 ordinary users and 2,467 celebrity users on Sin... Purpose: This study aims to investigate and compare celebrity and ordinary users' behaviors on Sina Weibo. Design/methodology/approach: Data was collected from 12,555 ordinary users and 2,467 celebrity users on Sina Weibo. Correlation and regression analysis was performed on users' number of followings, number of followers and number of posts. Findings: The results revealed significant difference between famous and ordinary users' behaviors on Sina Weibo. We found correlation among ordinary users' number of followings, number of followers and number of posts, but for celebrity users, only their number of followings and number of posts are related with each other. For both ordinary and celebrity users, their number of followings significantly affects how many posts they publish. Research limitations: We only carried out our investigation on Sina Weibo and the findings need to be further verified on other microblogging platforms. Practical implications: This research is useful for microblogging service providers to understand different types of users and promote the continuous use of their services. Originality/value: This research delivers valuable insights into understanding of the characteristics of different types of microbloggers and the ways to increase user viscosity. 展开更多
关键词 microblog Information dissemination Behavior characteristics Empiricalstudy
在线阅读 下载PDF
A time sequence analysis on the informal information flow mechanism of microblogging
10
作者 Yuan HU Xiaoli LIAO Andong WU 《Chinese Journal of Library and Information Science》 2011年第Z1期68-81,共14页
Microblog is a new Internet featured product, which has seen a rapid development in recent years. Researchers from different countries are making various technical analyses on microblogging applications. In this study... Microblog is a new Internet featured product, which has seen a rapid development in recent years. Researchers from different countries are making various technical analyses on microblogging applications. In this study, through using the natural language processing(NLP) and data mining, we analyzed the information content transmitted via a microblog, users' social networks and their interactions, and carried out an empirical analysis on the dissemination process of one particular piece of information via Sina Weibo.Based on the result of these analyses, we attempt to develop a better understanding about the rule and mechanism of the informal information flow in microblogging. 展开更多
关键词 microblog Information flow model Social network Information dissemination
在线阅读 下载PDF
基于政务微博的自然灾害知识图谱构建——以森林火灾为例
11
作者 王志宇 刘雨薇 《现代情报》 CSSCI 北大核心 2024年第3期47-58,119,共13页
[目的/意义]利用政务微博信息构建自然灾害知识图谱,旨在为相关部门加强自然灾害事件的管理提供知识层面的参考价值。[方法/过程]以森林火灾事件为例,选取政务微博信息资源,首先使用LDA主题模型划分微博资源主题;其次构建自然灾害知识... [目的/意义]利用政务微博信息构建自然灾害知识图谱,旨在为相关部门加强自然灾害事件的管理提供知识层面的参考价值。[方法/过程]以森林火灾事件为例,选取政务微博信息资源,首先使用LDA主题模型划分微博资源主题;其次构建自然灾害知识图谱的模式层和数据层,包括本体构建、实体抽取、关系抽取和数据融合等环节;最后使用Neo4j图数据库实现自然灾害知识图谱的存储与检索,实现自然灾害信息的组织与可视化。[结果/结论]构建了基于主题划分的自然灾害知识图谱,实现了自然灾害信息的主题知识关联与规范化处理,对提升政府部门防范与管理自然灾害的科学决策水平具有积极作用。 展开更多
关键词 政务微博 自然灾害 LDA主题模型 知识图谱 知识可视化
在线阅读 下载PDF
乡村振兴在新媒体中是如何呈现的?——基于SNA的乡村振兴议题微博内容分析
12
作者 王耀宗 《成都大学学报(社会科学版)》 2024年第6期111-128,共18页
“乡村振兴战略”由党的十九大报告提出,在党的二十大报告中获得强调。新媒体作为互联网时代记录社会变迁、映射时代发展的重要窗口,在相当程度上反映了乡村发展建设状况。本文基于社会网络分析法,挖掘新媒体中乡村振兴议题背后所映射... “乡村振兴战略”由党的十九大报告提出,在党的二十大报告中获得强调。新媒体作为互联网时代记录社会变迁、映射时代发展的重要窗口,在相当程度上反映了乡村发展建设状况。本文基于社会网络分析法,挖掘新媒体中乡村振兴议题背后所映射的发展图景,发现:乡村振兴是阶段性和整体性的有机统一,乡村振兴关键时间节点前后两阶段的发展呈现出阶段性特征,第一阶段以新内源性发展模式下的基础建设和产业发展为主,乡村不断从外部汲取知识和技能等资源激发内生动力;第二阶段注重巩固前期的建设成果,并通过明星公益与利用影视综艺打造乡村IP等方式探寻乡村振兴新路径。阶段构成整体,整体高于阶段,乡村振兴的阶段性内容又共同构建出以生产、分配、交换和消费四大环节为主体的整体循环机制。然而,新媒体在呈现乡村振兴时,较少触及农村养老、医疗卫生、法治建设等微观层面的公共问题,未来应强化多元主体的协同合作,更为全面地展现乡村振兴的多元面貌。因此,把握乡村振兴图景,应当立足整体,将其放置到阶段性的坐标系中,强化微观与宏观的协调统一,才能更深刻理解新时代中国乡村的变化。 展开更多
关键词 乡村振兴 新媒体 新内源性发展 再生产循环 微博
在线阅读 下载PDF
微博在教育中的应用探讨与设计 被引量:64
13
作者 王时进 段渭军 杨晓明 《现代教育技术》 CSSCI 2010年第8期91-94,共4页
从微博的含义和特性入手,思考了微博在教育中的应用价值,对教育微博的系统架构和功能模块进行了详细的分析和设计,列举了建设教育微博中可能存在的问题,并提出了问题的解决方案。
关键词 微博 教育微博 交流平台 班级管理
在线阅读 下载PDF
一种基于用户动态兴趣和社交网络的微博推荐方法 被引量:25
14
作者 陈杰 刘学军 +1 位作者 李斌 章玮 《电子学报》 EI CAS CSCD 北大核心 2017年第4期898-905,共8页
针对为微博用户推荐符合其兴趣取向的个性化微博信息的问题,结合LDA主题模型,提出了一种基于用户动态兴趣和社交网络(DISN)的微博推荐方法.DISN方法首先引入时间函数,推断出用户的兴趣向量,通过对新发布的微博数据内容进行聚类分组,以... 针对为微博用户推荐符合其兴趣取向的个性化微博信息的问题,结合LDA主题模型,提出了一种基于用户动态兴趣和社交网络(DISN)的微博推荐方法.DISN方法首先引入时间函数,推断出用户的兴趣向量,通过对新发布的微博数据内容进行聚类分组,以用户兴趣向量筛选与用户最匹配的分组,随后以网格索引的形式对选定的分组中微博进行查询,计算微博发布者被目标用户关注的可能性并进行排序,最终形成推荐列表.实验验证了DISN方法较之传统方法更具有效性和高效性. 展开更多
关键词 动态兴趣 社交网络 LDA 网格查询 个性化推荐 微博
在线阅读 下载PDF
社交网络中的用户转发行为预测 被引量:19
15
作者 谢婧 刘功申 +1 位作者 苏波 孟魁 《上海交通大学学报》 EI CAS CSCD 北大核心 2013年第4期584-588,共5页
以新浪微博为研究对象,基于微博主题及用户特征,提出社交网络中的用户转发行为预测算法.首先,基于互信息理论,从已发生转发行为的用户的微博内容中提取特征,通过分析给定用户的微博内容与特征之间的相关程度,预测用户是否会对给定主题... 以新浪微博为研究对象,基于微博主题及用户特征,提出社交网络中的用户转发行为预测算法.首先,基于互信息理论,从已发生转发行为的用户的微博内容中提取特征,通过分析给定用户的微博内容与特征之间的相关程度,预测用户是否会对给定主题的微博发生转发行为;然后通过研究用户性别、粉丝数、关注数、微博数与用户转发行为的关系,选取合适的用户特征描述,并基于贝叶斯模型预测给定用户对微博的转发概率.最后,结合以上2种算法的预测结果,得到给定用户对某主题微博的转发行为预测.该预测算法对研究网络舆情传播及微博营销具有重要意义. 展开更多
关键词 社交网络 微博 转发行为
在线阅读 下载PDF
基于有意义串聚类的微博热点话题发现方法 被引量:12
16
作者 贺敏 王丽宏 +2 位作者 杜攀 张瑾 程学旗 《通信学报》 EI CSCD 北大核心 2013年第S1期256-262,共7页
针对微博数据特征稀疏、内容碎片化的特点,提出一种基于有意义串聚类的热点话题发现方法。结合重复串计算、上下文邻接分析和语言规则过滤多种策略,提取能够表达独立完整语义的有意义串,并将微博数据建模在相对较小的有意义串空间,通过... 针对微博数据特征稀疏、内容碎片化的特点,提出一种基于有意义串聚类的热点话题发现方法。结合重复串计算、上下文邻接分析和语言规则过滤多种策略,提取能够表达独立完整语义的有意义串,并将微博数据建模在相对较小的有意义串空间,通过聚类产生候选话题,根据热度排序发现热点话题。微博数据实验结果表明,该方法在一定程度上实现对微博高维稀疏空间的降维,对于微博空间的热点话题发现有效可行。 展开更多
关键词 热点话题 微博 有意义串 特征聚类
在线阅读 下载PDF
微博类社交网络中信息传播的测量与分析 被引量:68
17
作者 张赛 徐恪 李海涛 《西安交通大学学报》 EI CAS CSCD 北大核心 2013年第2期124-130,共7页
为了更好地掌握在线社交网络中信息传播的特征规律和用户行为,以新浪微博为代表对社交网络中的信息传播进行了较大规模的测量、统计和分析,提出了一种三角和算法用于探测用户粉丝数阈值。该算法根据散点分布的统计规律来估计使微博热度... 为了更好地掌握在线社交网络中信息传播的特征规律和用户行为,以新浪微博为代表对社交网络中的信息传播进行了较大规模的测量、统计和分析,提出了一种三角和算法用于探测用户粉丝数阈值。该算法根据散点分布的统计规律来估计使微博热度达到某一值的粉丝数的临界值,发现为使微博热度大于10,用户粉丝数应大于150。其他测量分析结果表明:新浪微博具有很强的"名人效应",用户频繁地发帖并不能引起较大的关注,热门微博的热度几乎都以激增方式增长。这些结论对网络营销和网络监管具有参考价值。 展开更多
关键词 在线社交网络 信息传播 微博热度 新浪微博
在线阅读 下载PDF
基于LDA模型的中文微博话题意见领袖挖掘 被引量:14
18
作者 冯时 景珊 +1 位作者 杨卓 王大玲 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第4期490-494,共5页
有效挖掘微博空间中的话题意见领袖成为亟待解决的热点问题.针对这一问题,提出了基于LDA语义信息和HowNet知识库的短文本子话题分类算法.对分类后的微博从显式、隐式及用户等方面综合衡量微博的影响力,并根据层次分析法对多个因素进行... 有效挖掘微博空间中的话题意见领袖成为亟待解决的热点问题.针对这一问题,提出了基于LDA语义信息和HowNet知识库的短文本子话题分类算法.对分类后的微博从显式、隐式及用户等方面综合衡量微博的影响力,并根据层次分析法对多个因素进行科学地权值分配.实验结果表明,提出的方法较基于支持向量机的方法具有更好的效果,同时提出的影响力度量模型可以有效地挖掘出微博中的话题意见领袖. 展开更多
关键词 微博 短文本分类 意见领袖 情感分析 LDA
在线阅读 下载PDF
基于时间序列分析的微博突发话题检测方法 被引量:11
19
作者 贺敏 徐杰 +2 位作者 杜攀 程学旗 王丽宏 《通信学报》 EI CSCD 北大核心 2016年第3期48-54,共7页
针对微博信息噪音大、新颖度难以判断的问题,在动量模型的基础上进行优化,提出了基于时序分析的微博突发话题检测方法。通过动量模型提取候选突发特征后,对特征的动量时间序列分别借鉴信号频域分析理论和股票趋势分析理论进行建模,分析... 针对微博信息噪音大、新颖度难以判断的问题,在动量模型的基础上进行优化,提出了基于时序分析的微博突发话题检测方法。通过动量模型提取候选突发特征后,对特征的动量时间序列分别借鉴信号频域分析理论和股票趋势分析理论进行建模,分析特征的频域特性来识别频繁伪突发特征,分析特征的新颖程度来识别间歇性伪突发特征,合并过滤后的有效突发特征形成突发话题。微博数据实验表明,该方法有效提高了突发话题检测的准确率和F值。 展开更多
关键词 突发话题 微博 突发特征 时序分析
在线阅读 下载PDF
基于提升系数的微博异常排名检测方法 被引量:5
20
作者 印桂生 张亚楠 +2 位作者 董宇欣 袁伟伟 董红斌 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2013年第4期488-493,共6页
通过操纵微博提升排名的行为严重干扰了正常的微博排名秩序,现有的微博异常排名检测方法忽略了微博拓扑对微博排名的影响.文中通过比较微博网络中随机链接的微博BlogRank值与全连接、环状拓扑微博联盟中目标微博的BlogRank值,提出一种... 通过操纵微博提升排名的行为严重干扰了正常的微博排名秩序,现有的微博异常排名检测方法忽略了微博拓扑对微博排名的影响.文中通过比较微博网络中随机链接的微博BlogRank值与全连接、环状拓扑微博联盟中目标微博的BlogRank值,提出一种基于提升系数的微博异常排名检测方法.在仿真数据集的实验表明,该方法能通过微博拓扑有效地识别微博异常排名. 展开更多
关键词 微博异常排名 微博拓扑 提升系数 BlogRank算法
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部