The Zintl compound Mg3Sb2 has been recently identified as promising thermoelectric material owing to its high thermoelectric performance and cost-effective,nontoxicity and environment friendly characteristics.However,...The Zintl compound Mg3Sb2 has been recently identified as promising thermoelectric material owing to its high thermoelectric performance and cost-effective,nontoxicity and environment friendly characteristics.However,the intrinsically p-type Mg3Sb2 shows low figure of merit(z T = 0.23 at 723 K) for its poor electrical conductivity.In this study,a series of Mg(3-x)LixSb2 bulk materials have been prepared by high-energy ball milling and spark plasma sintering(SPS) process.Electrical transport measurements on these materials revealed significant improvement on the power factor with respect to the undoped sample,which can be essentially attributed to the increased carrier concentration,leading to a maximum z T of0.59 at 723 K with the optimum doping level x = 0.01.Additionally,the engineering z T and energy conversion efficiency are calculated to be 0.235 and 4.89%,respectively.To our best knowledge,those are the highest values of all reported p-type Mg3Sb2-based compounds with single element doping.展开更多
Mg3Sb1.5Bi0.5-based alloys have received much attention,and current reports on this system mainly focus on the modulation of doping.However,there lacks the explanation for the choice of Mg3Sb1.5Bi0.5 as matrix.Here in...Mg3Sb1.5Bi0.5-based alloys have received much attention,and current reports on this system mainly focus on the modulation of doping.However,there lacks the explanation for the choice of Mg3Sb1.5Bi0.5 as matrix.Here in this work,the thermoelectric properties of Mg3Sb2-xBix(0.4≤x≤0.55)compounds are systematically investigated by using the first principles calculation combined with experiment.The calculated results show that the band gap decreases after Bi has been substituted for Sb site,which makes the thermal activation easier.The maximum figure of merit(ZT)is 0.27 at 773 K,which is attributed to the ultra-low thermal conductivity 0.53 W·m-1·K-1 for x=0.5.The large mass difference between Bi and Sb atoms,the lattice distortion induced by substituting Bi for Sb,and the nanoscale Bi-rich particles distributed on the matrix are responsible for the reduction of thermal conductivity.The introduction of Bi into Mg3Sb2-based materials plays a vital role in regulating the transport performance of thermoelectric materials.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1601213 and 51572287)the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(Grant No.QYZDB-SSW-SLH013)
文摘The Zintl compound Mg3Sb2 has been recently identified as promising thermoelectric material owing to its high thermoelectric performance and cost-effective,nontoxicity and environment friendly characteristics.However,the intrinsically p-type Mg3Sb2 shows low figure of merit(z T = 0.23 at 723 K) for its poor electrical conductivity.In this study,a series of Mg(3-x)LixSb2 bulk materials have been prepared by high-energy ball milling and spark plasma sintering(SPS) process.Electrical transport measurements on these materials revealed significant improvement on the power factor with respect to the undoped sample,which can be essentially attributed to the increased carrier concentration,leading to a maximum z T of0.59 at 723 K with the optimum doping level x = 0.01.Additionally,the engineering z T and energy conversion efficiency are calculated to be 0.235 and 4.89%,respectively.To our best knowledge,those are the highest values of all reported p-type Mg3Sb2-based compounds with single element doping.
基金National Natural Science Foundation of China(Grant Nos.51371010,51572066,and 50801002)the Beijing Municipal Natural Science Foundation,China(Grant No.2112007)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.PXM2019-014204-500032)the Science Fund from the Advanced Space Propulsion Laboratory of BICE and Beijing Engineering Research Center of Efficient and Green Aerospace Propulsion Technology,China(Grant No.LabASP-2018-09).
文摘Mg3Sb1.5Bi0.5-based alloys have received much attention,and current reports on this system mainly focus on the modulation of doping.However,there lacks the explanation for the choice of Mg3Sb1.5Bi0.5 as matrix.Here in this work,the thermoelectric properties of Mg3Sb2-xBix(0.4≤x≤0.55)compounds are systematically investigated by using the first principles calculation combined with experiment.The calculated results show that the band gap decreases after Bi has been substituted for Sb site,which makes the thermal activation easier.The maximum figure of merit(ZT)is 0.27 at 773 K,which is attributed to the ultra-low thermal conductivity 0.53 W·m-1·K-1 for x=0.5.The large mass difference between Bi and Sb atoms,the lattice distortion induced by substituting Bi for Sb,and the nanoscale Bi-rich particles distributed on the matrix are responsible for the reduction of thermal conductivity.The introduction of Bi into Mg3Sb2-based materials plays a vital role in regulating the transport performance of thermoelectric materials.