Milliseconds process to produce hydrogen by steam methane reforming (SMR) reaction, based on Ni catalyst rather than noble catalyst such as Pd, Rh or Ru, in micro-channel reactors has been paid more and more attenti...Milliseconds process to produce hydrogen by steam methane reforming (SMR) reaction, based on Ni catalyst rather than noble catalyst such as Pd, Rh or Ru, in micro-channel reactors has been paid more and more attentions in recent years. This work aimed to further improve the catalytic performance of nickel-based catalyst by the introduction of additives, i.e., MgO and FeO, prepared by impregnation method on the micro-channels made of metal-ceramic complex substrate. The prepared catalysts were tested in the same micro-channel reactor by switching the catalyst plates. The results showed that among the tested catalysts Ni-Mg catalyst had the highest activity, especially under harsh conditions, i.e., at high space velocity and/or low reaction temperature. Moreover, the catalyst activity and selectivity were stable during the 12 h on stream test even when the ratio of steam to carbon (SIC) was as low as 1.0. The addition of MgO promoted the active Ni species to have a good dispersion on the substrate, leading to a better catalytic performance for SMR reaction.展开更多
In this work, CaO-NiO mixed oxide powders were evaluated as consecutive CO;chemisorbents and catalytic materials for hydrogen production thought the CH;reforming process. Between the NiO impregnated CaO and CaO-NiO me...In this work, CaO-NiO mixed oxide powders were evaluated as consecutive CO;chemisorbents and catalytic materials for hydrogen production thought the CH;reforming process. Between the NiO impregnated CaO and CaO-NiO mechanical composite, the first one presented better chemical behaviors during the CO;capture and CH;reforming processes, obtaining syngas(H;+ CO) as final product. Results showed that syngas was produced at two different temperature ranges, between 400 and 600 °C and at T > 800 °C, where the first temperature range corresponds to the CH;reforming process but the second temperature range was attributed to a different catalytic reaction process: CH;partial oxidation. These results were confirmed through different isothermal and cyclic experiments as well as by XRD analysis of the final catalytic products, where the nickel reduction was evidenced. Moreover, when a CO-O;flow was used during the carbonation process a triple process was achieved:(i) CO oxidation,(ii) CO;chemisorption and(iii) CH;reforming. Using this gas flow the hydrogen production was always higher than that obtained with CO;.展开更多
CeO2-promoted Ni/Al2O3-ZrO2 (Ni/Al2O3-ZrO2-CeO2) catalysts were prepared by a direct sol-gel process with citric acid as gelling agent. The catalysts used for the methane reforming with CO2 was studied by infrared s...CeO2-promoted Ni/Al2O3-ZrO2 (Ni/Al2O3-ZrO2-CeO2) catalysts were prepared by a direct sol-gel process with citric acid as gelling agent. The catalysts used for the methane reforming with CO2 was studied by infrared spectroscopy (IR), thermal gravimetric analysis (TGA), microscopic analysis, X-ray diffraction (XRD) and temperature-programmed reduction (TPR). The catalytic performance for CO2 reforming of methane to synthesis gas was investigated in a continuous-flow micro-reactor under atmospheric pressure. TGA, IR, XRD and microscopic analysis show that the catalysts prepared by the direct sol-gel process consist of Ni particles with a nanostructure of around 5 nm and an amorphous-phase composite oxide support. There exists a chemical interaction between metallic Ni particles and supports, which makes metallic Ni well dispersed, highly active and stable. The addition of CeO2 effectively improves the dispersion and the stability of Ni particles of the prepared catalysts, and enhances the adsorption of CO2 on the surface of catalysts. The catalytic tests for methane reforming with CO2 to synthesis gas show that the Ni/Al2O3-ZrO2-CeO2 catalysts show excellent activity and stability compared with the Ni/Al2O3 catalyst. The excellent catalytic activity and stability of the Ni/Al2O3-ZrO2-CeO2 are attributed to the highly, uniformly and stably dispersed small metallic Ni particles, the high reducibility of the Ni oxides and the interaction between metallic Ni particles and the composite oxide supports.展开更多
This study investigates the dry reformation of methane(DRM)over Ni/Al_(2)O_(3)catalysts in a dielectric barrier discharge(DBD)non-thermal plasma reactor.A novel hybrid machine learning(ML)model is developed to optimiz...This study investigates the dry reformation of methane(DRM)over Ni/Al_(2)O_(3)catalysts in a dielectric barrier discharge(DBD)non-thermal plasma reactor.A novel hybrid machine learning(ML)model is developed to optimize the plasma-catalytic DRM reaction with limited experimental data.To address the non-linear and complex nature of the plasma-catalytic DRM process,the hybrid ML model integrates three well-established algorithms:regression trees,support vector regression,and artificial neural networks.A genetic algorithm(GA)is then used to optimize the hyperparameters of each algorithm within the hybrid ML model.The ML model achieved excellent agreement with the experimental data,demonstrating its efficacy in accurately predicting and optimizing the DRM process.The model was subsequently used to investigate the impact of various operating parameters on the plasma-catalytic DRM performance.We found that the optimal discharge power(20 W),CO_(2)/CH_(4)molar ratio(1.5),and Ni loading(7.8 wt%)resulted in the maximum energy yield at a total flow rate of∼51 mL/min.Furthermore,we investigated the relative significance of each operating parameter on the performance of the plasma-catalytic DRM process.The results show that the total flow rate had the greatest influence on the conversion,with a significance exceeding 35%for each output,while the Ni loading had the least impact on the overall reaction performance.This hybrid model demonstrates a remarkable ability to extract valuable insights from limited datasets,enabling the development and optimization of more efficient and selective plasma-catalytic chemical processes.展开更多
Carbon dioxide and methane are two main greenhouse gases which are contributed to serious global warming.Fortunately,dry reforming of methane(DRM),a very important reaction developed decades ago,can convert these two ...Carbon dioxide and methane are two main greenhouse gases which are contributed to serious global warming.Fortunately,dry reforming of methane(DRM),a very important reaction developed decades ago,can convert these two major greenhouse gases into value-added syngas or hydrogen.The main problem retarding its industrialization is the seriously coking formation upon the nickel-based catalysts.Herein,a series of confined indium-nickel(In-Ni)intermetallic alloy nanocatalysts(In_(x)Ni@SiO_(2))have been prepared and displayed superior coking resistance for DRM reaction.The sample containing 0.5 wt.%of In loading(In_(0.5)Ni@SiO_(2))shows the best balance of carbon deposition resistance and DRM reactivity even after 430 h long term stability test.The boosted carbon resistance can be ascribed to the confinement of core–shell structure and to the transfer of electrons from Indium to Nickel in In-Ni intermetallic alloys due to the smaller electronegativity of In.Both the silica shell and the increase of electron cloud density on metallic Ni can weaken the ability of Ni to activate C–H bond and decrease the deep cracking process of methane.The reaction over the confined InNi intermetallic alloy nanocatalyst was conformed to the Langmuir-Hinshelwood(L-H)mechanism revealed by in situ diffuse reflectance infrared Fourier transform spectroscopy(in-situ DRIFTS).This work provides a guidance to design high performance coking resistance catalysts for methane dry reforming to efficiently utilize these two main greenhouse gases.展开更多
The Co-incorporated Ce1-xZrxO2 catalysts were prepared by co-precipitation for carbon dioxide reforming of methane.The ratio of Ce to Zr was varied to optimize the performances of co-precipitated Co-Ce-Zr-Ox catalysts...The Co-incorporated Ce1-xZrxO2 catalysts were prepared by co-precipitation for carbon dioxide reforming of methane.The ratio of Ce to Zr was varied to optimize the performances of co-precipitated Co-Ce-Zr-Ox catalysts.The prepared catalysts were characterized by various physico-chemical characterization techniques including TPR,X-ray diffraction,N2 adsorption at low temperature,XPS and CO2-TPSR.The co-precipitated Co-Ce0.8Zr0.2O2 sample containing 16% CoO exhibited a higher catalytic activity among the five catalysts,and the activity was maintained without significant loss during the reaction for 60 h.Under the conditions of 750 ℃,0.1 MPa,36000 ml/(h gcat),and CO2/CH4 molar ratio of 1:1,the CO2 conversion over this catalyst was 75% while the CH4 conversion was 67%.The cubic Ce0.8Zr0.2O2 facilitated a higher dispersion and a higher reducibility of the cobalt component,and the apparent activation energy for Co-Ce0.8Zr0.2O2 sample was 49.1 kJ/mol in the CO2/CH4 reforming reaction.As a result,the Co-Ce0.8Zr0.2O2 sample exhibited a higher activity and stability for the reforming of CH4 with CO2.展开更多
Ni-Co bimetallic catalysts with different Ni/Co content were derived from cold plasma jet decomposition and reduction of hydrotalcite-like compounds containing Ni,Co,Mg and Al,and their catalytic performance was inves...Ni-Co bimetallic catalysts with different Ni/Co content were derived from cold plasma jet decomposition and reduction of hydrotalcite-like compounds containing Ni,Co,Mg and Al,and their catalytic performance was investigated with dry reforming of methane.Experimental results showed that the hydrotalcite-like precursors could be completely decomposed and partly reduced by cold plasma jet,and the Nicontained catalysts exhibited much higher activity than the catalyst without Ni.Especially,the catalyst with Ni/Co ratio of 8/2 achieved not only the highest conversions of 80.3%and 69.3%for CH4 and CO2,respectively,but also the best stability in 100 h testing.The catalysts were characterized by XRD,XPS,TEM and N2 adsorption techniques,and the results showed that the better performance of the 8Ni2Co bimetallic catalyst was attributed to its higher metal dispersion,smaller metal particle size,as well as the interaction effect between Ni and Co,which were brought by the special catalyst preparation method.展开更多
A series of Ni/La2Zr2O7 pyrochlore catalysts prepared by impregnation method and treated by dielectric barrier discharge(DBD) plasma in different atmospheres and varied sequences were prepared and applied for dry re...A series of Ni/La2Zr2O7 pyrochlore catalysts prepared by impregnation method and treated by dielectric barrier discharge(DBD) plasma in different atmospheres and varied sequences were prepared and applied for dry reforming of methane(DRM). It is found that all of the plasma treated catalysts show evidently improved activity and coke resistance in comparison with the non-plasma treated one. The best performance is achieved on Ni/La2Zr2O7–H2P–C,a catalyst treated in H2 plasma before calcination. TGA-DSC and SEM demonstrate that carbon deposition is significantly suppressed on all of the plasma treated samples. Moreover,XRD and TEM results testify that both Ni O and Ni sizes on the calcined and reduced samples treated by plasma are also decreased,which results in higher Ni metal dispersion on the reduced and used catalysts and enhances the interactions between Ni sites and the support. It is believed that these are the inherent reasons accounting for the promotional effects of plasma treatment on the reaction performance of the Ni/La2Zr2O7 pyrochlore catalysts.展开更多
CeO2 oxygen carrier was prepared by precipitation method and tested by two-step steam reforming of methane (SRM). Two-step SRM for hydrogen and syngas generation is investigated in a fixed-bed reactor. Methane is di...CeO2 oxygen carrier was prepared by precipitation method and tested by two-step steam reforming of methane (SRM). Two-step SRM for hydrogen and syngas generation is investigated in a fixed-bed reactor. Methane is directly converted to syngas at a H2/CO ratio close to 2 : 1 at a high temperature (above 750 °C) by the lattice oxygen of CeO2; methane cracking is found when the reduction degree of CeO2 was above 5.0% at 850 °C in methane isothermal reaction. CeO2?δ obtained from methane isothermal reaction can split water to generate CO-free hydrogen and renew its lattice oxygen at 700 °C; simultaneously, deposited carbon is selectively oxidized to CO2 by steam following the reaction (C+2H2O→CO2+2H2). Slight deactivation in terms of amounts of desired products (syngas and hydrogen) is observed in ten repetitive two-step SRM process due to the carbon deposition on CeO2 surface as well as sintering of CeO2.展开更多
In this study, Ni/YZrOcatalysts prepared with impregnation method and treated by dielectric barrier discharge plasma(DBD) in different atmospheres have been investigated for methane dry reforming. It is revealed by H-...In this study, Ni/YZrOcatalysts prepared with impregnation method and treated by dielectric barrier discharge plasma(DBD) in different atmospheres have been investigated for methane dry reforming. It is revealed by H-TPR that plasma treatment can enhance the interaction between Ni O/Ni particles and the YZrOpyrochlore support. Therefore, catalysts with smaller Ni O and Ni grains sizes, higher metallic Ni active surface areas can be achieved, as evidenced by XRD, TEM and Hadsorption-desorption measurements. As a consequence, the plasma-treated catalysts show significantly improved activity, stability and coke resistance, as testified by the TEM and TGA-DSC results. Plasma treatment in H/Ar gas mixture is found to be the best condition to prepare Ni/YZrO, which can be used to obtain a catalyst with the highest activity, stability and most potent coke resistance. It is believed that the smaller Ni grain size and higher metallic Ni active surface area induced by plasma treatment are the inherent reasons accounting for the promoted reaction performance of the Ni/YZrOpyrochlore catalysts.展开更多
Dry reforming of methane by CO2 using nickel ferrite as precursor of catalysts was investigated.Nickel ferrite crystalline particles were prepared by coprecipitation of nitrates with NaOH or ammonia followed by calcin...Dry reforming of methane by CO2 using nickel ferrite as precursor of catalysts was investigated.Nickel ferrite crystalline particles were prepared by coprecipitation of nitrates with NaOH or ammonia followed by calcination,or by hydrothermal synthesis without calcination step.The textural and structural properties were determined by a number of analysis methods,including X-ray diffraction (XRD),Raman spectroscopy and X-ray photoelectron spectroscopy (XPS),among which X-ray diffraction (XRD) was at room and variable temperatures.All synthesized oxides showed the presence of micro or nanoparticles of NiFe2O4 inverse spinel,but Fe2O3 (hematite) was also present when ammonia was used for coprecipitation.The reducibility by hydrogen was studied by temperature-programmed reduction (TPR) and in situ XRD,which showed the influence of the preparation method.The surface area (BET),particle size (Rietveld refinement),as well as surface Ni/Fe atomic ratio (XPS) and the behavior upon reduction varied according to the synthesis method.The catalytic reactivity was investigated using isopropanol decomposition to determine the acid/base properties.The catalytic performance of methane reforming with CO2 was measured with and without the pre-treatment of catalysts under H2 in 650-800 C range.The catalytic conversions of methane and CO2 were quite low but they increased when the catalysts were pre-reduced.A significant contribution of reverse water gas shift reaction accounted for the low values of H2 /CO ratio.No coking was observed as shown by the reoxidation step performed after the catalytic reactions.The possible formation of nickel-iron alloy observed during the study of reducibility by hydrogen was invoked to account for the catalytic behavior.展开更多
In this paper, three kinds of MgO with different specific surface area were prepared, and their effects on the catalytic performance of nickel catalysts for the carbon dioxide reforming of methane were investigated. T...In this paper, three kinds of MgO with different specific surface area were prepared, and their effects on the catalytic performance of nickel catalysts for the carbon dioxide reforming of methane were investigated. The results showed that MgO support with the higher specific surface area led to the higher dispersion of the active metal, which resulted in the higher initial activity. On the other hand, the specific surface area of MgO materials might not be the dominant factor for the basicity of support to chemisorb and activate CO2, which was another important factor for the performance of catalysts. Herein, Ni/MgO(CA) catalyst with proper specific surface area and strong ability to activate CO2exhibited stable catalytic property and the carbon species deposited on the Ni/MgO(CA) catalyst after 10 h of reaction at 650 ?C were mainly activated carbon species.展开更多
Nowadays,combined steam and dry reforming of methane(CSDRM)is viewed as a new alternative for the production of high-quality syngas(termed as"metgas",H2:CO of 2.0)suitable for subsequent synthesis of methano...Nowadays,combined steam and dry reforming of methane(CSDRM)is viewed as a new alternative for the production of high-quality syngas(termed as"metgas",H2:CO of 2.0)suitable for subsequent synthesis of methanol,considered as a promising renewable energy vector to substitute fossil fuel resources.Adequate operation conditions(molar feed composition,temperature and pressure)are required for the sole production of"metgas"while achieving high CH4,CO2 and H2O conversion levels.In this work,thermodynamic equilibrium analysis of CSDRM has been performed using Gibbs free energy minimization where;(i)the effect of temperature(range:200-1000℃),(ii)feed composition(stoichiometric ratio as compared to a feed under excess steam or excess carbon dioxide),(iii)pressure(range:1-20 bar)and,(iv)the presence of a gaseous diluent on coke yields,reactivity levels and selectivity towards"metgas"were investigated.Running CSDRM at a temperature of at least 800℃,a pressure of 1 bar and under a feed composition where CO2-H2O/CH4 is around 1.0,are optimum conditions for the theoretical production of"metgas"while minimizing C(S)formation for longer experimental catalytic runs.A second part of this work presents a review of the recent progresses in the design of(principally)Ni-based catalysts along with some mechanistic and kinetic modeling aspects for the targeted CSDRM reaction.As compared to noble metals,their high availability,low cost and good intrinsic activity levels are main reasons for increasing research dedications in understanding deactivation potentials and providing amelioration strategies for further development.Deactivation causes and main orientations towards designing deactivationresistant supported Ni nanoparticles are clearly addressed and analyzed.Reported procedures based on salient catalytic features(i.e.,acidity/basicity character,redox properties,oxygen mobility,metal-support interaction)and recently employed innovative tactics(such as confinement within mesoporous systems,stabilization through core shell structures or on carbide surfaces)are highlighted and their impact on Ni0reactivity and stability are discussed.The final aspect of this review encloses the major directions and trends for improving synthesis/preparation designs of Ni-based catalysts for the sake of upgrading their usage into industrially oriented combined reforming operations.展开更多
Supported nickel catalysts are promising candidates for dry reforming of methane, but agglomeration of Ni^(0) and coke deposition hinder the industrial applications. Herein, we report a novel interface-directed synthe...Supported nickel catalysts are promising candidates for dry reforming of methane, but agglomeration of Ni^(0) and coke deposition hinder the industrial applications. Herein, we report a novel interface-directed synthetic approach to construct distinct metal ensembles by carefully tuning the compositions of the carriers. A Zr-Mn-Zn ternary oxide-supported Ni catalyst, together with the respective binary oxide-supported analogues, was synthesized by adopting a sequential co-precipitation and wetness impregnation method. Combined characterization techniques identify distinct catalyst models, including (i) conventional NiO nanoparticles with different sizes on Zr-Mn and Zr-Zn, and (ii) epitaxially growing NiO ensembles of a few nanometers thickness at the periphery of ZnO_(x) particles. These catalysts exhibit divergent responses in the catalytic testing, with the ternary oxide system significantly outperforming the binary analogues. The strong electronic interactions between Mn-Ni increase Ni dispersion and the activity while the stability is strengthened upon Zn addition. Both high activity, high selectivity, and remarkable stability are attained upon co-adding Mn and Zn. The interfaces between Ni and Zr-Mn-Zn rather than the physical contacts of individual oxide-supported analogues through mechanical mixing are keys for the outstanding performance.展开更多
In the current study, the hybrid effect of a corona discharge and γ-alumina supported Ni catalysts in CO2 reforming of methane is investigated. The study includes both purely catalytic operation in the temperature ra...In the current study, the hybrid effect of a corona discharge and γ-alumina supported Ni catalysts in CO2 reforming of methane is investigated. The study includes both purely catalytic operation in the temperature range of 923-1023 K, and hybrid catalytic-plasma operation of DC corona discharge reactor at room temperature and ambient pressure. The effect of feed flow rate, discharge power and Ni/γ-Al2O3 catalysts are studied. When CH4/CO2 ratio in the feed is 1/2, the syngas of low Ha/CO ratio at about 0.56 is obtained, which is a potential feedstock for synthesis of liquid hydrocarbons. Although Ni catalyst is only active above 573 K, presence of Ni catalysts in the cold corona plasma reactor (T≤523 K) shows promising increase in the conversions of methane and carbon dioxide. When Ni catalysts are used in the plasma reaction, H2/CO ratios in the products are slightly modified, selectivity to CO increases whereas fewer by-products such as hydrocarbons and oxygenates are formed.展开更多
A thermodynamic analysis of methane oxidative reforming was carried out by Gibbs energy minimization (at constant pressure and temperature) and entropy maximization (at constant pressure and enthalpy) methods,to d...A thermodynamic analysis of methane oxidative reforming was carried out by Gibbs energy minimization (at constant pressure and temperature) and entropy maximization (at constant pressure and enthalpy) methods,to determine the equilibrium compositions and equilibrium temperatures,respectively.Both cases were treated as optimization problems (non-linear programming formulation).The GAMS 23.1 software and the CONOPT2 solver were used in the resolution of the proposed problems.The hydrogen and syngas production were favored at high temperatures and low pressures,and thus the oxygen to methane molar ratio (O 2 /CH 4) was the dominant factor to control the composition of the product formed.For O 2 /CH 4 molar ratios higher than 0.5,the oxidative reforming of methane presented autothermal behavior in the case of either utilizing O 2 or air as oxidant agent,but oxidation reaction with air possessed the advantage of avoiding peak temperatures in the system,due to change in the heat capacity of the system caused by the addition of nitrogen.The calculated results were compared with previously published experimental and simulated data with a good agreement between them.展开更多
The conversion of methane and carbon dioxide into syngas(dry reforming of methane;DRM)has attracted attention owing to the potential to reuse greenhouse gases.Titanium dioxide(TiO_(2))-based photocatalysts,which have ...The conversion of methane and carbon dioxide into syngas(dry reforming of methane;DRM)has attracted attention owing to the potential to reuse greenhouse gases.Titanium dioxide(TiO_(2))-based photocatalysts,which have been widely commercialized owing to their high efficiency,non-toxicity,and low cost,are strongly desired in DRM.Here,we report a monoclinic-phase TiO_(2)-B nanobelts-supported rhodium(Rh/TiO_(2)-B nanobelts)catalyst that efficiently promotes DRM under ultraviolet light irradiation at low temperatures.Photogenerated holes in the TiO_(2)-B nanobelts were used to oxidize methane,while the electrons were trapped in rhodium to reduce carbon dioxide.Rh/TiO_(2)-B nanobelts exhibited considerably higher durability and activity than Rh-loaded conventional TiO_(2)(anatase and rutile),owing to the lattice and/or surface oxygen reactivity in TiO_(2)-B nanobelts,which was suggested by X-ray photoelectron spectroscopy measurements and photocatalytic performance tests under an atmosphere of methane alone.This study paves the path for the effective utilization of methane by constructing active TiO_(2)-based nanometal photocatalysts.展开更多
In this work the effects of the contents of nickel (5, 7.5, 10 wt%) and copper (0, 1, 2 wt%) and reac- tion temperature (650, 700, 750 ℃) on the catalytic performance of Ni-Cu/Al_2O_3 catalyst in methane dry re...In this work the effects of the contents of nickel (5, 7.5, 10 wt%) and copper (0, 1, 2 wt%) and reac- tion temperature (650, 700, 750 ℃) on the catalytic performance of Ni-Cu/Al_2O_3 catalyst in methane dry reforming were evaluated using Box-Behnken design in order to optimize methane conversion, H_2/CO ratio and the catalyst deactivation. Different catalysts were prepared by co-impregnation method and characterized by XRD, BET, H_2-TPR, FESEM and TG/DTA analyses. The results revealed that copper addi- tion improved the catalyst reducibility. Promoted catalyst with low amounts of Cu gave higher activity and stability with high resistance to coke deposition and agglomeration of active phase especially during the reaction. However catalysts with high amounts of Cu were less active and rather deactivated due to the active sites sintering as well as Ni covering by Cu-enriched phase. The optimal conditions were de- termined by desirability function approach as 10 wt% of Ni, 0.83 wt% of Cu at 750℃. CH_4 conversion of 95.1%, H_2/CO ratio of 1 and deactivation of 1.4% were obtained experimentally under optimum conditions, which were in close agreement with the values oredicted hv the developed model.展开更多
Dry reforming of methane(DRM) involves the conversion of carbon dioxide(CO_(2)) and methane(CH_(4)) into syngas(a mixture of hydrogen, H_(2), and carbon monoxide, CO), which can then be used to produce a wide range of...Dry reforming of methane(DRM) involves the conversion of carbon dioxide(CO_(2)) and methane(CH_(4)) into syngas(a mixture of hydrogen, H_(2), and carbon monoxide, CO), which can then be used to produce a wide range of products by means of Fischer–Tropsch synthesis. DRM has gained much attention as a means of mitigating damage from anthropogenic greenhouse gas(GHGs) emissions to the environment and instead utilizing these gases as precursors for value-added chemicals or to synthesize sustainable fuels and chemicals. Carbon deposition or coke formation, a primary cause of catalyst deactivation, has proven to be a major challenge in the development of DRM catalysts. The use of nickel-and cobalt-based catalysts has been extensively explored for DRM for their high activity and low cost but suffer from poor stability due to coke formation that has hindered their commercialization. Numerous articles have reviewed the various aspects of catalyst deactivation and strategies for mitigation, but few has focused on the benefit of bimetallic catalysts for mitigating coke formation. Bimetallic catalysts, often improve the catalytic stability over their monometallic counterparts due to synergistic effects resulting from two metal-tometal interactions. This review will cover DRM literature for various bimetallic catalyst systems, including the effect of supports and promoters, on the mitigation of carbonaceous deactivation.展开更多
The effects of temperature and pressure on the steam reforming of methane (CH4+H2O→← 3H2+CO) were investigated in a membrane reactor (MR) with a hydrogen permeable membrane. The studies used a novel silica-bas...The effects of temperature and pressure on the steam reforming of methane (CH4+H2O→← 3H2+CO) were investigated in a membrane reactor (MR) with a hydrogen permeable membrane. The studies used a novel silica-based membrane prepared by using the chemical vapor deposition (CVD) technique with a permeance for H2 of 6.0×10^-8 mol·m^-2.s^-1.Pa^-1 at 923 K. The results in a packed-bed reactor (PBR) were compared to those of the membrane reactor at various temperatures (773-923 K) and pressures (1-20 atm, 101.3-2026.5 kPa) using a commercial Ni/MgAl2O4 catalyst. The conversion of methane was improved significantly in the MR by the countercurrent removal of hydrogen at all temperatures and allowed product yields higher than the equilibrium to be obtained. Pressure had a positive effect on the hydrogen yield because of the increase in driving force for the permeance of hydrogen. The yield of hydrogen increased with pressure and reached a value of 73× 10^-6 mol·g^-1 .s^-1 at 2026.5 kPa and 923 K which was higher by 108% than the value of 35×10^-6 mol·g^-1.s^-1 obtained for the equilibrium yield. The results obtained with the silica-based membrane were similar to those obtained with various other membranes as reported in the literature.展开更多
基金supported by the National Natural Science Foundation of China(No.21176137) and Petro China
文摘Milliseconds process to produce hydrogen by steam methane reforming (SMR) reaction, based on Ni catalyst rather than noble catalyst such as Pd, Rh or Ru, in micro-channel reactors has been paid more and more attentions in recent years. This work aimed to further improve the catalytic performance of nickel-based catalyst by the introduction of additives, i.e., MgO and FeO, prepared by impregnation method on the micro-channels made of metal-ceramic complex substrate. The prepared catalysts were tested in the same micro-channel reactor by switching the catalyst plates. The results showed that among the tested catalysts Ni-Mg catalyst had the highest activity, especially under harsh conditions, i.e., at high space velocity and/or low reaction temperature. Moreover, the catalyst activity and selectivity were stable during the 12 h on stream test even when the ratio of steam to carbon (SIC) was as low as 1.0. The addition of MgO promoted the active Ni species to have a good dispersion on the substrate, leading to a better catalytic performance for SMR reaction.
基金financially supported by the projects PAPIITUNAM(IN-101916)CONACyTDGAPA-UNAM for financial support
文摘In this work, CaO-NiO mixed oxide powders were evaluated as consecutive CO;chemisorbents and catalytic materials for hydrogen production thought the CH;reforming process. Between the NiO impregnated CaO and CaO-NiO mechanical composite, the first one presented better chemical behaviors during the CO;capture and CH;reforming processes, obtaining syngas(H;+ CO) as final product. Results showed that syngas was produced at two different temperature ranges, between 400 and 600 °C and at T > 800 °C, where the first temperature range corresponds to the CH;reforming process but the second temperature range was attributed to a different catalytic reaction process: CH;partial oxidation. These results were confirmed through different isothermal and cyclic experiments as well as by XRD analysis of the final catalytic products, where the nickel reduction was evidenced. Moreover, when a CO-O;flow was used during the carbonation process a triple process was achieved:(i) CO oxidation,(ii) CO;chemisorption and(iii) CH;reforming. Using this gas flow the hydrogen production was always higher than that obtained with CO;.
基金supported by the National Natural Science Foundation of China (NO. 20976013, 21006057)
文摘CeO2-promoted Ni/Al2O3-ZrO2 (Ni/Al2O3-ZrO2-CeO2) catalysts were prepared by a direct sol-gel process with citric acid as gelling agent. The catalysts used for the methane reforming with CO2 was studied by infrared spectroscopy (IR), thermal gravimetric analysis (TGA), microscopic analysis, X-ray diffraction (XRD) and temperature-programmed reduction (TPR). The catalytic performance for CO2 reforming of methane to synthesis gas was investigated in a continuous-flow micro-reactor under atmospheric pressure. TGA, IR, XRD and microscopic analysis show that the catalysts prepared by the direct sol-gel process consist of Ni particles with a nanostructure of around 5 nm and an amorphous-phase composite oxide support. There exists a chemical interaction between metallic Ni particles and supports, which makes metallic Ni well dispersed, highly active and stable. The addition of CeO2 effectively improves the dispersion and the stability of Ni particles of the prepared catalysts, and enhances the adsorption of CO2 on the surface of catalysts. The catalytic tests for methane reforming with CO2 to synthesis gas show that the Ni/Al2O3-ZrO2-CeO2 catalysts show excellent activity and stability compared with the Ni/Al2O3 catalyst. The excellent catalytic activity and stability of the Ni/Al2O3-ZrO2-CeO2 are attributed to the highly, uniformly and stably dispersed small metallic Ni particles, the high reducibility of the Ni oxides and the interaction between metallic Ni particles and the composite oxide supports.
基金This project received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 813393the funding from the National Natural Science Foundation of China (No. 52177149)
文摘This study investigates the dry reformation of methane(DRM)over Ni/Al_(2)O_(3)catalysts in a dielectric barrier discharge(DBD)non-thermal plasma reactor.A novel hybrid machine learning(ML)model is developed to optimize the plasma-catalytic DRM reaction with limited experimental data.To address the non-linear and complex nature of the plasma-catalytic DRM process,the hybrid ML model integrates three well-established algorithms:regression trees,support vector regression,and artificial neural networks.A genetic algorithm(GA)is then used to optimize the hyperparameters of each algorithm within the hybrid ML model.The ML model achieved excellent agreement with the experimental data,demonstrating its efficacy in accurately predicting and optimizing the DRM process.The model was subsequently used to investigate the impact of various operating parameters on the plasma-catalytic DRM performance.We found that the optimal discharge power(20 W),CO_(2)/CH_(4)molar ratio(1.5),and Ni loading(7.8 wt%)resulted in the maximum energy yield at a total flow rate of∼51 mL/min.Furthermore,we investigated the relative significance of each operating parameter on the performance of the plasma-catalytic DRM process.The results show that the total flow rate had the greatest influence on the conversion,with a significance exceeding 35%for each output,while the Ni loading had the least impact on the overall reaction performance.This hybrid model demonstrates a remarkable ability to extract valuable insights from limited datasets,enabling the development and optimization of more efficient and selective plasma-catalytic chemical processes.
基金supported by the National Natural Science Foundation of China(21976078 and 21773106)the National Key R&D Program of China(2016YFC0205900)+1 种基金the Natural Science Foundation of Jiangxi Province(20202ACB213001)National Engineering Laboratory for Mobile Source Emission Control Technology(NELMS2019A12)。
文摘Carbon dioxide and methane are two main greenhouse gases which are contributed to serious global warming.Fortunately,dry reforming of methane(DRM),a very important reaction developed decades ago,can convert these two major greenhouse gases into value-added syngas or hydrogen.The main problem retarding its industrialization is the seriously coking formation upon the nickel-based catalysts.Herein,a series of confined indium-nickel(In-Ni)intermetallic alloy nanocatalysts(In_(x)Ni@SiO_(2))have been prepared and displayed superior coking resistance for DRM reaction.The sample containing 0.5 wt.%of In loading(In_(0.5)Ni@SiO_(2))shows the best balance of carbon deposition resistance and DRM reactivity even after 430 h long term stability test.The boosted carbon resistance can be ascribed to the confinement of core–shell structure and to the transfer of electrons from Indium to Nickel in In-Ni intermetallic alloys due to the smaller electronegativity of In.Both the silica shell and the increase of electron cloud density on metallic Ni can weaken the ability of Ni to activate C–H bond and decrease the deep cracking process of methane.The reaction over the confined InNi intermetallic alloy nanocatalyst was conformed to the Langmuir-Hinshelwood(L-H)mechanism revealed by in situ diffuse reflectance infrared Fourier transform spectroscopy(in-situ DRIFTS).This work provides a guidance to design high performance coking resistance catalysts for methane dry reforming to efficiently utilize these two main greenhouse gases.
文摘The Co-incorporated Ce1-xZrxO2 catalysts were prepared by co-precipitation for carbon dioxide reforming of methane.The ratio of Ce to Zr was varied to optimize the performances of co-precipitated Co-Ce-Zr-Ox catalysts.The prepared catalysts were characterized by various physico-chemical characterization techniques including TPR,X-ray diffraction,N2 adsorption at low temperature,XPS and CO2-TPSR.The co-precipitated Co-Ce0.8Zr0.2O2 sample containing 16% CoO exhibited a higher catalytic activity among the five catalysts,and the activity was maintained without significant loss during the reaction for 60 h.Under the conditions of 750 ℃,0.1 MPa,36000 ml/(h gcat),and CO2/CH4 molar ratio of 1:1,the CO2 conversion over this catalyst was 75% while the CH4 conversion was 67%.The cubic Ce0.8Zr0.2O2 facilitated a higher dispersion and a higher reducibility of the cobalt component,and the apparent activation energy for Co-Ce0.8Zr0.2O2 sample was 49.1 kJ/mol in the CO2/CH4 reforming reaction.As a result,the Co-Ce0.8Zr0.2O2 sample exhibited a higher activity and stability for the reforming of CH4 with CO2.
基金supported by the National Natural Science Foundation of China(11075113)
文摘Ni-Co bimetallic catalysts with different Ni/Co content were derived from cold plasma jet decomposition and reduction of hydrotalcite-like compounds containing Ni,Co,Mg and Al,and their catalytic performance was investigated with dry reforming of methane.Experimental results showed that the hydrotalcite-like precursors could be completely decomposed and partly reduced by cold plasma jet,and the Nicontained catalysts exhibited much higher activity than the catalyst without Ni.Especially,the catalyst with Ni/Co ratio of 8/2 achieved not only the highest conversions of 80.3%and 69.3%for CH4 and CO2,respectively,but also the best stability in 100 h testing.The catalysts were characterized by XRD,XPS,TEM and N2 adsorption techniques,and the results showed that the better performance of the 8Ni2Co bimetallic catalyst was attributed to its higher metal dispersion,smaller metal particle size,as well as the interaction effect between Ni and Co,which were brought by the special catalyst preparation method.
基金supported by the Chinese Natural Science Foundation (21263015 and 21203088)the Education Department of Jiangxi Province (KJLD14005 and GJJ14205)the Natural Science Foundation of Jiangxi Province (20142BAB213013)
文摘A series of Ni/La2Zr2O7 pyrochlore catalysts prepared by impregnation method and treated by dielectric barrier discharge(DBD) plasma in different atmospheres and varied sequences were prepared and applied for dry reforming of methane(DRM). It is found that all of the plasma treated catalysts show evidently improved activity and coke resistance in comparison with the non-plasma treated one. The best performance is achieved on Ni/La2Zr2O7–H2P–C,a catalyst treated in H2 plasma before calcination. TGA-DSC and SEM demonstrate that carbon deposition is significantly suppressed on all of the plasma treated samples. Moreover,XRD and TEM results testify that both Ni O and Ni sizes on the calcined and reduced samples treated by plasma are also decreased,which results in higher Ni metal dispersion on the reduced and used catalysts and enhances the interactions between Ni sites and the support. It is believed that these are the inherent reasons accounting for the promotional effects of plasma treatment on the reaction performance of the Ni/La2Zr2O7 pyrochlore catalysts.
基金supported by the National Natural Science Foundation of China (NO. 51004060)the Natural Science Foundation of Yunnan Province (NO. 2008E030M, 2010ZC108)+2 种基金the Research Foundation for the Doctoral Program of Higher Education of China (NO. 20095314120005)the Analysis and Test Foundation of Kunming University of Science and Technology (KUST)the 2010 Innovation Foundation of KUST
文摘CeO2 oxygen carrier was prepared by precipitation method and tested by two-step steam reforming of methane (SRM). Two-step SRM for hydrogen and syngas generation is investigated in a fixed-bed reactor. Methane is directly converted to syngas at a H2/CO ratio close to 2 : 1 at a high temperature (above 750 °C) by the lattice oxygen of CeO2; methane cracking is found when the reduction degree of CeO2 was above 5.0% at 850 °C in methane isothermal reaction. CeO2?δ obtained from methane isothermal reaction can split water to generate CO-free hydrogen and renew its lattice oxygen at 700 °C; simultaneously, deposited carbon is selectively oxidized to CO2 by steam following the reaction (C+2H2O→CO2+2H2). Slight deactivation in terms of amounts of desired products (syngas and hydrogen) is observed in ten repetitive two-step SRM process due to the carbon deposition on CeO2 surface as well as sintering of CeO2.
基金supported by the National Natural Science Foundation of China (21567016, 21566022, 21263015)the Natural Science Foundation of Jiangxi Province (20151BBE50006, 20151BAB203024)the Education Department of Jiangxi Province (KJLD14005, GJJ150016)
文摘In this study, Ni/YZrOcatalysts prepared with impregnation method and treated by dielectric barrier discharge plasma(DBD) in different atmospheres have been investigated for methane dry reforming. It is revealed by H-TPR that plasma treatment can enhance the interaction between Ni O/Ni particles and the YZrOpyrochlore support. Therefore, catalysts with smaller Ni O and Ni grains sizes, higher metallic Ni active surface areas can be achieved, as evidenced by XRD, TEM and Hadsorption-desorption measurements. As a consequence, the plasma-treated catalysts show significantly improved activity, stability and coke resistance, as testified by the TEM and TGA-DSC results. Plasma treatment in H/Ar gas mixture is found to be the best condition to prepare Ni/YZrO, which can be used to obtain a catalyst with the highest activity, stability and most potent coke resistance. It is believed that the smaller Ni grain size and higher metallic Ni active surface area induced by plasma treatment are the inherent reasons accounting for the promoted reaction performance of the Ni/YZrOpyrochlore catalysts.
文摘Dry reforming of methane by CO2 using nickel ferrite as precursor of catalysts was investigated.Nickel ferrite crystalline particles were prepared by coprecipitation of nitrates with NaOH or ammonia followed by calcination,or by hydrothermal synthesis without calcination step.The textural and structural properties were determined by a number of analysis methods,including X-ray diffraction (XRD),Raman spectroscopy and X-ray photoelectron spectroscopy (XPS),among which X-ray diffraction (XRD) was at room and variable temperatures.All synthesized oxides showed the presence of micro or nanoparticles of NiFe2O4 inverse spinel,but Fe2O3 (hematite) was also present when ammonia was used for coprecipitation.The reducibility by hydrogen was studied by temperature-programmed reduction (TPR) and in situ XRD,which showed the influence of the preparation method.The surface area (BET),particle size (Rietveld refinement),as well as surface Ni/Fe atomic ratio (XPS) and the behavior upon reduction varied according to the synthesis method.The catalytic reactivity was investigated using isopropanol decomposition to determine the acid/base properties.The catalytic performance of methane reforming with CO2 was measured with and without the pre-treatment of catalysts under H2 in 650-800 C range.The catalytic conversions of methane and CO2 were quite low but they increased when the catalysts were pre-reduced.A significant contribution of reverse water gas shift reaction accounted for the low values of H2 /CO ratio.No coking was observed as shown by the reoxidation step performed after the catalytic reactions.The possible formation of nickel-iron alloy observed during the study of reducibility by hydrogen was invoked to account for the catalytic behavior.
基金supported by the South-Central University for Nationalities(CZZ12002)
文摘In this paper, three kinds of MgO with different specific surface area were prepared, and their effects on the catalytic performance of nickel catalysts for the carbon dioxide reforming of methane were investigated. The results showed that MgO support with the higher specific surface area led to the higher dispersion of the active metal, which resulted in the higher initial activity. On the other hand, the specific surface area of MgO materials might not be the dominant factor for the basicity of support to chemisorb and activate CO2, which was another important factor for the performance of catalysts. Herein, Ni/MgO(CA) catalyst with proper specific surface area and strong ability to activate CO2exhibited stable catalytic property and the carbon species deposited on the Ni/MgO(CA) catalyst after 10 h of reaction at 650 ?C were mainly activated carbon species.
基金financial support through the SOL-CARE(Energy-065,2016–2019)project(JC-ENERGY-2014 first call)。
文摘Nowadays,combined steam and dry reforming of methane(CSDRM)is viewed as a new alternative for the production of high-quality syngas(termed as"metgas",H2:CO of 2.0)suitable for subsequent synthesis of methanol,considered as a promising renewable energy vector to substitute fossil fuel resources.Adequate operation conditions(molar feed composition,temperature and pressure)are required for the sole production of"metgas"while achieving high CH4,CO2 and H2O conversion levels.In this work,thermodynamic equilibrium analysis of CSDRM has been performed using Gibbs free energy minimization where;(i)the effect of temperature(range:200-1000℃),(ii)feed composition(stoichiometric ratio as compared to a feed under excess steam or excess carbon dioxide),(iii)pressure(range:1-20 bar)and,(iv)the presence of a gaseous diluent on coke yields,reactivity levels and selectivity towards"metgas"were investigated.Running CSDRM at a temperature of at least 800℃,a pressure of 1 bar and under a feed composition where CO2-H2O/CH4 is around 1.0,are optimum conditions for the theoretical production of"metgas"while minimizing C(S)formation for longer experimental catalytic runs.A second part of this work presents a review of the recent progresses in the design of(principally)Ni-based catalysts along with some mechanistic and kinetic modeling aspects for the targeted CSDRM reaction.As compared to noble metals,their high availability,low cost and good intrinsic activity levels are main reasons for increasing research dedications in understanding deactivation potentials and providing amelioration strategies for further development.Deactivation causes and main orientations towards designing deactivationresistant supported Ni nanoparticles are clearly addressed and analyzed.Reported procedures based on salient catalytic features(i.e.,acidity/basicity character,redox properties,oxygen mobility,metal-support interaction)and recently employed innovative tactics(such as confinement within mesoporous systems,stabilization through core shell structures or on carbide surfaces)are highlighted and their impact on Ni0reactivity and stability are discussed.The final aspect of this review encloses the major directions and trends for improving synthesis/preparation designs of Ni-based catalysts for the sake of upgrading their usage into industrially oriented combined reforming operations.
基金financial supports from the Zhejiang Normal University(YS304320035)the Natural Science Foundation of China(21603039)。
文摘Supported nickel catalysts are promising candidates for dry reforming of methane, but agglomeration of Ni^(0) and coke deposition hinder the industrial applications. Herein, we report a novel interface-directed synthetic approach to construct distinct metal ensembles by carefully tuning the compositions of the carriers. A Zr-Mn-Zn ternary oxide-supported Ni catalyst, together with the respective binary oxide-supported analogues, was synthesized by adopting a sequential co-precipitation and wetness impregnation method. Combined characterization techniques identify distinct catalyst models, including (i) conventional NiO nanoparticles with different sizes on Zr-Mn and Zr-Zn, and (ii) epitaxially growing NiO ensembles of a few nanometers thickness at the periphery of ZnO_(x) particles. These catalysts exhibit divergent responses in the catalytic testing, with the ternary oxide system significantly outperforming the binary analogues. The strong electronic interactions between Mn-Ni increase Ni dispersion and the activity while the stability is strengthened upon Zn addition. Both high activity, high selectivity, and remarkable stability are attained upon co-adding Mn and Zn. The interfaces between Ni and Zr-Mn-Zn rather than the physical contacts of individual oxide-supported analogues through mechanical mixing are keys for the outstanding performance.
基金supported by the National Iranian Oil Company (N.I.O.C.)
文摘In the current study, the hybrid effect of a corona discharge and γ-alumina supported Ni catalysts in CO2 reforming of methane is investigated. The study includes both purely catalytic operation in the temperature range of 923-1023 K, and hybrid catalytic-plasma operation of DC corona discharge reactor at room temperature and ambient pressure. The effect of feed flow rate, discharge power and Ni/γ-Al2O3 catalysts are studied. When CH4/CO2 ratio in the feed is 1/2, the syngas of low Ha/CO ratio at about 0.56 is obtained, which is a potential feedstock for synthesis of liquid hydrocarbons. Although Ni catalyst is only active above 573 K, presence of Ni catalysts in the cold corona plasma reactor (T≤523 K) shows promising increase in the conversions of methane and carbon dioxide. When Ni catalysts are used in the plasma reaction, H2/CO ratios in the products are slightly modified, selectivity to CO increases whereas fewer by-products such as hydrocarbons and oxygenates are formed.
基金supported by CAPES-Coordenacāo de Aperfeic oamento de Pessoal de Ensino Superior-Brazil and CNPq-Conselho Nacional de Desen-volvimento Científico e Tecnológico-Brazil
文摘A thermodynamic analysis of methane oxidative reforming was carried out by Gibbs energy minimization (at constant pressure and temperature) and entropy maximization (at constant pressure and enthalpy) methods,to determine the equilibrium compositions and equilibrium temperatures,respectively.Both cases were treated as optimization problems (non-linear programming formulation).The GAMS 23.1 software and the CONOPT2 solver were used in the resolution of the proposed problems.The hydrogen and syngas production were favored at high temperatures and low pressures,and thus the oxygen to methane molar ratio (O 2 /CH 4) was the dominant factor to control the composition of the product formed.For O 2 /CH 4 molar ratios higher than 0.5,the oxidative reforming of methane presented autothermal behavior in the case of either utilizing O 2 or air as oxidant agent,but oxidation reaction with air possessed the advantage of avoiding peak temperatures in the system,due to change in the heat capacity of the system caused by the addition of nitrogen.The calculated results were compared with previously published experimental and simulated data with a good agreement between them.
基金supported by a grant from the Japan Science and Technology Agency(JST)CREST(JPMJCR15P1)。
文摘The conversion of methane and carbon dioxide into syngas(dry reforming of methane;DRM)has attracted attention owing to the potential to reuse greenhouse gases.Titanium dioxide(TiO_(2))-based photocatalysts,which have been widely commercialized owing to their high efficiency,non-toxicity,and low cost,are strongly desired in DRM.Here,we report a monoclinic-phase TiO_(2)-B nanobelts-supported rhodium(Rh/TiO_(2)-B nanobelts)catalyst that efficiently promotes DRM under ultraviolet light irradiation at low temperatures.Photogenerated holes in the TiO_(2)-B nanobelts were used to oxidize methane,while the electrons were trapped in rhodium to reduce carbon dioxide.Rh/TiO_(2)-B nanobelts exhibited considerably higher durability and activity than Rh-loaded conventional TiO_(2)(anatase and rutile),owing to the lattice and/or surface oxygen reactivity in TiO_(2)-B nanobelts,which was suggested by X-ray photoelectron spectroscopy measurements and photocatalytic performance tests under an atmosphere of methane alone.This study paves the path for the effective utilization of methane by constructing active TiO_(2)-based nanometal photocatalysts.
文摘In this work the effects of the contents of nickel (5, 7.5, 10 wt%) and copper (0, 1, 2 wt%) and reac- tion temperature (650, 700, 750 ℃) on the catalytic performance of Ni-Cu/Al_2O_3 catalyst in methane dry reforming were evaluated using Box-Behnken design in order to optimize methane conversion, H_2/CO ratio and the catalyst deactivation. Different catalysts were prepared by co-impregnation method and characterized by XRD, BET, H_2-TPR, FESEM and TG/DTA analyses. The results revealed that copper addi- tion improved the catalyst reducibility. Promoted catalyst with low amounts of Cu gave higher activity and stability with high resistance to coke deposition and agglomeration of active phase especially during the reaction. However catalysts with high amounts of Cu were less active and rather deactivated due to the active sites sintering as well as Ni covering by Cu-enriched phase. The optimal conditions were de- termined by desirability function approach as 10 wt% of Ni, 0.83 wt% of Cu at 750℃. CH_4 conversion of 95.1%, H_2/CO ratio of 1 and deactivation of 1.4% were obtained experimentally under optimum conditions, which were in close agreement with the values oredicted hv the developed model.
基金supported in part by the National Science Foundation under Grant No. 1955521the Donors of the American Chemical Society Petroleum Research Fund,for partial support of this work+1 种基金supported in part by the U.S. Department of Energy,Office of Science,Office of Workforce Development for Teachers and Scientists (WDTS)under the Science Undergraduate Laboratory Internships Program(SULI) and Visiting Faculty Program (VFP)Brookhaven National Laboratory (BNL) was supported by the U.S. Department of Energy (DOE),grant DE-SC0012704。
文摘Dry reforming of methane(DRM) involves the conversion of carbon dioxide(CO_(2)) and methane(CH_(4)) into syngas(a mixture of hydrogen, H_(2), and carbon monoxide, CO), which can then be used to produce a wide range of products by means of Fischer–Tropsch synthesis. DRM has gained much attention as a means of mitigating damage from anthropogenic greenhouse gas(GHGs) emissions to the environment and instead utilizing these gases as precursors for value-added chemicals or to synthesize sustainable fuels and chemicals. Carbon deposition or coke formation, a primary cause of catalyst deactivation, has proven to be a major challenge in the development of DRM catalysts. The use of nickel-and cobalt-based catalysts has been extensively explored for DRM for their high activity and low cost but suffer from poor stability due to coke formation that has hindered their commercialization. Numerous articles have reviewed the various aspects of catalyst deactivation and strategies for mitigation, but few has focused on the benefit of bimetallic catalysts for mitigating coke formation. Bimetallic catalysts, often improve the catalytic stability over their monometallic counterparts due to synergistic effects resulting from two metal-tometal interactions. This review will cover DRM literature for various bimetallic catalyst systems, including the effect of supports and promoters, on the mitigation of carbonaceous deactivation.
文摘The effects of temperature and pressure on the steam reforming of methane (CH4+H2O→← 3H2+CO) were investigated in a membrane reactor (MR) with a hydrogen permeable membrane. The studies used a novel silica-based membrane prepared by using the chemical vapor deposition (CVD) technique with a permeance for H2 of 6.0×10^-8 mol·m^-2.s^-1.Pa^-1 at 923 K. The results in a packed-bed reactor (PBR) were compared to those of the membrane reactor at various temperatures (773-923 K) and pressures (1-20 atm, 101.3-2026.5 kPa) using a commercial Ni/MgAl2O4 catalyst. The conversion of methane was improved significantly in the MR by the countercurrent removal of hydrogen at all temperatures and allowed product yields higher than the equilibrium to be obtained. Pressure had a positive effect on the hydrogen yield because of the increase in driving force for the permeance of hydrogen. The yield of hydrogen increased with pressure and reached a value of 73× 10^-6 mol·g^-1 .s^-1 at 2026.5 kPa and 923 K which was higher by 108% than the value of 35×10^-6 mol·g^-1.s^-1 obtained for the equilibrium yield. The results obtained with the silica-based membrane were similar to those obtained with various other membranes as reported in the literature.