The risk of infection following consumption of foodborne pathogens contaminated foods became a significant concern for human health and imposes great economic losses to food industry.Herein,Ag nanoparticles were integ...The risk of infection following consumption of foodborne pathogens contaminated foods became a significant concern for human health and imposes great economic losses to food industry.Herein,Ag nanoparticles were integrated to Cu-based metal-organic framework(Cu-MOF)for antibacterial activity.The crystal structure,morphology and composition of the prepared composite Ag@Cu-MOF were confirmed by powder X-ray diffraction,thermogravimetric analysis,scanning electron microscope,transmission electron microscope,Fourier transform infrared spectroscopy,and X-ray photoelectron spectroscopy.Antibacterial assays revealed that Ag@Cu-MOF exhibited increased inhibitory activity against Escherichia coli O157:H7 in comparison to Cu-MOF.Ag@Cu-MOF treated bacterial cells displayed distinct morphological changes,a decreased ratio of live/dead cells,as well as a reduction of intracellular ATP.Antibiofilm studies demonstrated that Ag@CuMOF could dramatically inhibit biofilm formation and disrupt preformed biofilms by interfering the metabolic activity and decreasing the expression of biofilm-associated genes.Food contamination model illustrated that Ag@Cu-MOF significantly prevented the growth of E.coli O157:H7 in packed pork.This study sheds light on the potential of Ag@Cu-MOF as a promising antimicrobial material for preserving pork.展开更多
Lanthanide metal-organic frameworks(Ln-MOFs)have received extensive attention in the development of photoluminescent(PL)materials due to their stable structures and unique line-like emission spectroscopic properties.H...Lanthanide metal-organic frameworks(Ln-MOFs)have received extensive attention in the development of photoluminescent(PL)materials due to their stable structures and unique line-like emission spectroscopic properties.However,in order to prepare Ln-MOFs with high PL quantum yield(PLQY),further improving the sensitization efficiency of the“antenna effect”is essential.Herein,remarkably enhanced PL in[Tb_(2)(BDC)_(3)(DMF)_(2)(H_(2)O)_(2)]_n MOF is successfully achieved via high-pressure engineering at room temperature.Notably,the PL intensity continues to increase as the pressure increases,reaching its peak at 12.0 GPa,which is 4.4 times that of the initial state.Detailed experimental and theoretical calculations have demonstrated that pressure engineering significantly narrows the bandgap of[Tb_(2)(BDC)_(3)(DMF)_(2)(H_(2)O)_(2)]_n,optimizing both singlet and triplet energy levels.Ultimately,higher antenna effect sensitization efficiency is achieved by promoting intersystem crossing and energy transfer processes.Our work provides a promising strategy for the development of high PLQY Ln-MOFs.展开更多
Strontium-90,a highly radioactive isotope,accumulates within the food chain and skeletal structure,posing significant risks to human health.There is a critical need for a sensitive detection strategy for Strontium-90 ...Strontium-90,a highly radioactive isotope,accumulates within the food chain and skeletal structure,posing significant risks to human health.There is a critical need for a sensitive detection strategy for Strontium-90 in complex environmental samples.Here,solid-state nanochannels,modified with metal-organic frameworks(MOF)and specific aptamers,were engineered for highly sensitive detection of strontium ion(Sr^(2+)).The synergistic effect between the reduced effective diameter of the nanochannels due to MOF and the specific binding of Sr^(2+) by aptamers amplifies the difference in ionic current signals,enhancing detection sensitivity significantly.The MOF-modified nanochannels exhibit highly sensitive detection of Sr^(2+),with a limit of detection(LOD)being 0.03 nmol·L^(-1),whereas the LOD for anodized aluminum oxide(AAO)without the modified MOF nanosheets is only 1000 nmol·L^(-1).These findings indicate that the LOD of Sr^(2+) detected by the MOF-modified nanochannels is approximately 33,000 times higher than that by the nanochannels without MOF modification.Additionally,the highly reliable detection of Sr^(2+) in various water samples was achieved,with a recovery rate ranging from 94.00%to 118.70%.This study provides valuable insights into the rapidly advancing field of advanced nanochannel-based sensors and their diverse applications for analyzing complex samples,including environmental contaminant detection,food analysis,medical diagnostics,and more.展开更多
Aqueous zinc ion batteries(AZIBs)are one of the promising energy storage devices.However,uncontrolled dendrite and side reactions have seriously hindered its further application.In this study,the metal-organic framewo...Aqueous zinc ion batteries(AZIBs)are one of the promising energy storage devices.However,uncontrolled dendrite and side reactions have seriously hindered its further application.In this study,the metal-organic framework(MOF)functionalized glass fiber separator(GF-PFC-31)was used to regulate interfacial behavior of zinc metal anode,enabling the development of high-performance AZIBs.In PFC-31,there areπ-πinteractions between two adjacent benzene rings with a spacing of 3.199 A.This spacing can block the passage of[Zn(H_(2)O)_6]^(2+)(8.6 A in diameter)through the GF-PFC-31 separator to a certain extent,which promotes the deposition process of Zn ions.In addition,the sulfonic acid group(-S03H)contained in GF-PFC-31 can form a hydrogen bonding network with H_(2)O,which can provide a desolvation effect and reduce the side reaction.Consequently,GF-PFC-31 separator achieves uniform deposition of Zn ions.The Zn‖GF-PFC-31‖Zn symmetric cell exhibits stable cycle life(3000 h at 1.2 mA cm^(-2),2000 h at 0.3 mA cm^(-2),and 2000 h at 5.0 mA cm^(-2)),and Zn‖GF-PFC-31‖MnO_(2) full cell with GF-PFC-31 separator can cycle for 1000 cycles at 1.2 A g^(-1)with capacity retention rate of 82.5%.This work provides a promising method to achieve high-performance AZIBs.展开更多
Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hamper...Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hampered their practical use in water splitting.Herein,we develop a bond length adjustment strategy for optimizing naphthalene-based MOFs that synthesized by acid etching Co-naphthalenedicarboxylic acid-based MOFs(donated as AE-CoNDA)to serve as efficient catalyst for water splitting.AE-CoNDA exhibits a low overpotential of 260 mV to reach 10 mA cm^(−2)and a small Tafel slope of 62 mV dec^(−1)with excellent stability over 100 h.After integrated AE-CoNDA onto BiVO_(4),photocurrent density of 4.3 mA cm^(−2)is achieved at 1.23 V.Experimental investigations demonstrate that the stretched Co-O bond length was found to optimize the orbitals hybridization of Co 3d and O 2p,which accounts for the fast kinetics and high activity.Theoretical calculations reveal that the stretched Co-O bond length strengthens the adsorption of oxygen-contained intermediates at the Co active sites for highly efficient water splitting.展开更多
Synergic catalytic effect between active sites and supports greatly determines the catalytic activity for the aerobic oxidative desulfurization of fuel oils.In this work,Ni-doped Co-based bimetallic metal-organic fram...Synergic catalytic effect between active sites and supports greatly determines the catalytic activity for the aerobic oxidative desulfurization of fuel oils.In this work,Ni-doped Co-based bimetallic metal-organic framework(CoNi-MOF)is fabricated to disperse N-hydroxyphthalimide(NHPI),in which the whole catalyst provides plentiful synergic catalytic effect to improve the performance of oxidative desulfurization(ODS).As a bimetallic MOF,the second metal Ni doping results in the flower-like morphology and the modification of electronic properties,which ensure the exposure of NHPI and strengthen the synergistic effect of the overall catalyst.Compared with the monometallic Co-MOF and naked NHPI,the NHPI@CoNi-MOF triggers the efficient activation of molecular oxygen and improves the ODS performance without an initiator.The sulfur removal of dibenzothiophene-based model oil reaches 96.4%over the NHPI@CoNi-MOF catalyst in 8 h of reaction.Furthermore,the catalytic product of this aerobic ODS reaction is sulfone,which is adsorbed on the catalyst surface due to the difference in polarity.This work provides new insight and strategy for the design of a strong synergic catalytic effect between NHPI and bimetallic supports toward high-activity aerobic ODS materials.展开更多
With the continuous advancement of communication technology,the escalating demand for electromagnetic shielding interference(EMI)materials with multifunctional and wideband EMI performance has become urgent.Controllin...With the continuous advancement of communication technology,the escalating demand for electromagnetic shielding interference(EMI)materials with multifunctional and wideband EMI performance has become urgent.Controlling the electrical and magnetic components and designing the EMI material structure have attracted extensive interest,but remain a huge challenge.Herein,we reported the alternating electromagnetic structure composite films composed of hollow metal-organic frameworks/layered MXene/nanocellulose(HMN)by alternating vacuum-assisted filtration process.The HMN composite films exhibit excellent EMI shielding effectiveness performance in the GHz frequency(66.8 dB at Kaband)and THz frequency(114.6 dB at 0.1-4.0 THz).Besides,the HMN composite films also exhibit a high reflection loss of 39.7 dB at 0.7 THz with an effective absorption bandwidth up to 2.1 THz.Moreover,HMN composite films show remarkable photothermal conversion performance,which can reach 104.6℃under 2.0 Sun and 235.4℃under 0.8 W cm^(−2),respectively.The unique micro-and macrostructural design structures will absorb more incident electromagnetic waves via interfacial polarization/multiple scattering and produce more heat energy via the local surface plasmon resonance effect.These features make the HMN composite film a promising candidate for advanced EMI devices for future 6G communication and the protection of electronic equipment in cold environments.展开更多
Metal-organic frameworks(MOFs)are among the most promising materials for lithium-ion batteries(LIBs)owing to their high surface area,periodic porosity,adjustable pore size,and controllable chemical composition.For ins...Metal-organic frameworks(MOFs)are among the most promising materials for lithium-ion batteries(LIBs)owing to their high surface area,periodic porosity,adjustable pore size,and controllable chemical composition.For instance,their unique porous structures promote electrolyte penetration,ions transport,and make them ideal for battery separators.Regulating the chemical composition of MOF can introduce more active sites for electrochemical reactions.Therefore,MOFs and their related composites have been extensively and thoroughly explored for LIBs.However,the reported reviews solely include the applications of MOFs in the electrode materials of LIBs and rarely involve other aspects.A systematic review of the application of MOFs in LIBs is essential for understanding the mechanism of MOFs and better designing related MOFs battery materials.This review systematically evaluates the latest developments in pristine MOFs and MOF composites for LIB applications,including MOFs as the main materials(anode,cathode,separators,and electrolytes)to auxiliary materials(coating layers and additives for electrodes).Furthermore,the synthesis,modification methods,challenges,and prospects for the application of MOFs in LIBs are discussed.展开更多
Metal-organic frameworks(MOFs),which are self-assembled porous coordination materials,have garnered considerable attention in the fields of optoelectronics,photovoltaic,photochemistry,and photocatalysis due to their d...Metal-organic frameworks(MOFs),which are self-assembled porous coordination materials,have garnered considerable attention in the fields of optoelectronics,photovoltaic,photochemistry,and photocatalysis due to their diverse structures and excellent tunability.However,the performance of MOF-based optoelectronic applications currently falls short of the industry benchmark.To enhance the performance of MOF materials,it is imperative to undertake comprehensive investigations aimed at gaining a deeper understanding of photophysics and sequentially optimizing properties related to photocarrier transport,recombination,interaction,and transfer.By utilizing femtosecond laser pulses to excite MOFs,time-resolved optical spectroscopy offers a means to observe and characterize these ultrafast microscopic processes.This approach adds the time coordinate as a novel dimension for comprehending the interaction between light and MOFs.Accordingly,this review provides a comprehensive overview of the recent advancements in the photophysics of MOFs and additionally outlines potential avenues for exploring the time domain in the investigation of MOFs.展开更多
In this work,nickel foam supported CeO_(2)-modified CoBDC(BDC stands for terephthalic acid linker)metal-organic frameworks(NF/CoBDC@CeO_(2)) are prepared by hydrothermal and subsequent impregnation methods,which can b...In this work,nickel foam supported CeO_(2)-modified CoBDC(BDC stands for terephthalic acid linker)metal-organic frameworks(NF/CoBDC@CeO_(2)) are prepared by hydrothermal and subsequent impregnation methods,which can be further transformed to NF/CoOOH@CeO_(2) by reconstruction during the electrocatalytic test.The obtained NF/CoOOH@CeO_(2) exhibits excellent performance in electrocatalytic oxidation of 5-hydroxymethylfurfural(HMF) because the introduction of CeO_(2) can optimize the electronic structure of the heterointerface and accelerate the accumulation of ^(*)OH.It requires only a potential of 1.290 V_(RHE) to provide a current density of 50 mA cm^(-2) in 1.0 M KOH+50 mM HMF,which is 222 mV lower than that required in 1,0 M KOH(1.512 V_(RHE)).In addition,density-functional theory calculation results demonstrate that CeO_(2) biases the electrons to the CoOOH side at the heterointerface and promotes the adsorption of ^(*)OH and ^(*)HMF on the catalyst surface,which lower the reaction energy barrier and facilitate the electrocata lytic oxidation process.展开更多
There are some inherent defects for the polyolefin based lithium battery separator,such as,poor thermal stability,poor electrolyte wettability and low porosity,which limit the development of lithium battery.An importa...There are some inherent defects for the polyolefin based lithium battery separator,such as,poor thermal stability,poor electrolyte wettability and low porosity,which limit the development of lithium battery.An important way to improve the performance of lithium battery is to improve the separator.Here,three novel separators combined with metal-organic framework materials(MOFs)and carbon materials were prepared by using the in situ growth method and the adsorption combination method simultaneously.The result showed that compared with the polypropylene separator,the porosity and electrolyte wettability were significantly improved in view of these novel polypropylene separators combined with MOFs and carbon materials.Meanwhile,the electrochemical performance of lithium battery equipped with the polypropylene separator combined with MOFs materials and carbon materials was also improved.The result showed that lithium batteries equipped with polypropylene separator combined with MOFs and carbon materials had higher capacity in the first charge and discharge cycle and better electrochemical kinetic reaction processes.展开更多
NH_(2)-MIL-125 is one of the most promising metal-organic frameworks(MOFs)for use as an adsorbent to remove nitrogen-containing compounds(NCCs)from fuels.In this study,NH_(2)-MIL-125 was further modified by loading th...NH_(2)-MIL-125 is one of the most promising metal-organic frameworks(MOFs)for use as an adsorbent to remove nitrogen-containing compounds(NCCs)from fuels.In this study,NH_(2)-MIL-125 was further modified by loading the highly electronegative F and the heteropoly acid phosphomolybdic acid hydrate(PMA).Hydrogen bonds are suggested to form between F and PMA.X-ray diffraction(XRD)and scanning electron microscopy(SEM)showed that the addition of these elements altered the morphology of NH_(2)-MIL-125,resulting in the growth of sectional octahedrons and cubes.The adsorptive denitrogenation(ADN)activity of 10%PMA@M125 was 1.7 times greater than that of NH_(2)-MIL-125 without F and PMA.The synergistic effect of F and PMA on the morphology and structure of NH_(2)-MIL-125 was examined,with a focus on different PMA contents.This study provides a simple method for modifying the morphology and structure of NH_(2)-MIL-125 by adding the required elements.展开更多
Aqueous zinc-ion batteries(AZIBs)are one of the promising energy storage systems,which consist of electrode materials,electrolyte,and separator.The first two have been significantly received ample development,while th...Aqueous zinc-ion batteries(AZIBs)are one of the promising energy storage systems,which consist of electrode materials,electrolyte,and separator.The first two have been significantly received ample development,while the prominent role of the separators in manipulating the stability of the electrode has not attracted sufficient attention.In this work,a separator(UiO-66-GF)modified by Zr-based metal organic framework for robust AZIBs is proposed.UiO-66-GF effectively enhances the transport ability of charge carriers and demonstrates preferential orientation of(002)crystal plane,which is favorable for corrosion resistance and dendrite-free zinc deposition.Consequently,Zn|UiO-66-GF-2.2|Zn cells exhibit highly reversible plating/stripping behavior with long cycle life over 1650 h at 2.0 mA cm^(−2),and Zn|UiO-66-GF-2.2|MnO_(2) cells show excellent long-term stability with capacity retention of 85%after 1000 cycles.The reasonable design and application of multifunctional metal organic frameworks modified separators provide useful guidance for constructing durable AZIBs.展开更多
Surface-functionalized nitrogen/carbon co-doped polymorphic TiO_(2) phase junction nanoparticles uniformly distributed in porous carbon matrix were synthesized by a simple one-step pyrolysis of titanium based metal-or...Surface-functionalized nitrogen/carbon co-doped polymorphic TiO_(2) phase junction nanoparticles uniformly distributed in porous carbon matrix were synthesized by a simple one-step pyrolysis of titanium based metal-organic framework(MOF),NH_(2)-MIL^(-1)25(Ti) at 700℃ under water vapour atmosphere.Introducing water vapour during the pyrolysis of NH_(2)-MIL^(-1)25(Ti) not only functionalizes the derived porous carbon matrix with carboxyl groups but also forms additional oxygen-rich N like interstitial/intraband states lying above the valence band of TiO2 along with the self-doped carbo n,which further narrows the energy band gaps of polymorphic TiO2 nanoparticles that enhance photocatalytic charge transfer efficiency.Without co-catalyst,sample N-C-TiO2/CArW demonstrates H_(2) evolution activity of 426 μmol gcat-1h^(-1),which remarkably outperforms commercial TiO_(2)(P-25) and N-C-TiO_(2)/CAr with a 5-fold and 3-fold H_(2) generation,respectively.This study clearly shows that water vapour atmosphere during the pyrolysis increases the hydrophilicity of the Ti-MOF derived composites by functionalizing porous carbon matrix with carboxylic groups,as well as enhancing the electrical conductivity and charge transfer efficiency due to the formation of additional localized oxygen-rich N like interstitial/intraband states.This work also demonstrates that by optimizing the anatase-rutile phase composition of the TiO2 polymorphs,tuning the energy band gaps by N/C co-doping and functionalizing the porous carbon matrix in the N-C-TiO2/C nanocomposites,the photocatalytic H_(2) generation activity can be further enhanced.展开更多
To effectively alleviate the surface structure degradation caused by electrolyte corrosion and transition metal(TM) dissolution for Ni-rich(Ni content > 0.6) cathode materials, porous Zirconium based metalorganic f...To effectively alleviate the surface structure degradation caused by electrolyte corrosion and transition metal(TM) dissolution for Ni-rich(Ni content > 0.6) cathode materials, porous Zirconium based metalorganic frameworks(Zr-MOFs, UiO-66) material is utilized herein as a positive electrode additive. UiO-66 owns tunable attachment sites and strong binding affinity, making itself an efficient defluorination agent to suppress the undesirable reactions caused by fluorine species. Besides, it can also relieve TMs dissolution and block the migration of TMs toward anode side since it’s a multifarious metal ions adsorbent,realizing both cathode and anode interface protection. Benefiting from these advantages, the UiO-66 assistant Ni-rich cathode achieves superior cycling stability. Particularly in full cell, the positive effects of this multifunctional additive are more pronounced than in the half-cell, that is after 400 cycles at 2 C,the capacity retention has doubled with the addition of UiO-66. More broadly, this unique application of functional additive provides new insight into the degradation mechanism of layered cathode materials and offers a new avenue to develop high-energy density batteries.展开更多
Investigation of metal–organic frameworks(MOFs)for biomedical applications has attracted much attention in recent years.MOFs are regarded as a promising class of nanocarriers for drug delivery owing to well-defined s...Investigation of metal–organic frameworks(MOFs)for biomedical applications has attracted much attention in recent years.MOFs are regarded as a promising class of nanocarriers for drug delivery owing to well-defined structure,ultrahigh surface area and porosity,tunable pore size,and easy chemical functionalization.In this review,the unique properties of MOFs and their advantages as nanocarriers for drug delivery in biomedical applications were discussed in the first section.Then,state-ofthe-art strategies to functionalize MOFs with therapeutic agents were summarized,including surface adsorption,pore encapsulation,covalent binding,and functional molecules as building blocks.In the third section,the most recent biological applications of MOFs for intracellular delivery of drugs,proteins,and nucleic acids,especially aptamers,were presented.Finally,challenges and prospects were comprehensively discussed to provide context for future development of MOFs as efficient drug delivery systems.展开更多
Introduction of multiple pore size regimes into metalorganic frameworks(MOFs)to form hierarchical porous structures can lead to improved performance of the material in various applications.In many cases,where interact...Introduction of multiple pore size regimes into metalorganic frameworks(MOFs)to form hierarchical porous structures can lead to improved performance of the material in various applications.In many cases,where interactions with bulky molecules are involved,enlarging the pore size of typically microporous MOF adsorbents or MOF catalysts is crucial for enhancing both mass transfer and molecular accessibility.In this review,we examine the range of synthetic strategies which have been reported thus far to prepare hierarchical MOFs or MOF composites with added macroporosity.These fabrication techniques can be either pre-or post-synthetic and include using hard or soft structural template agents,defect formation,routes involving supercritical CO2,and 3D printing.We also discuss potential applications and some of the challenges involved with current techniques,which must be addressed if any of these approaches are to be taken forward for industrial applications.展开更多
The development of microwave absorption materials(MAMs) is a considerable important topic because our living space is crowed with electromagnetic wave which threatens human’s health.And MAMs are also used in radar st...The development of microwave absorption materials(MAMs) is a considerable important topic because our living space is crowed with electromagnetic wave which threatens human’s health.And MAMs are also used in radar stealth for protecting the weapons from being detected.Many nanomaterials were studied as MAMs,but not all of them have the satisfactory performance.Recently,metal-organic frameworks(MOFs) have attracted tremendous attention owing to their tunable chemical structures,diverse properties,large specific surface area and uniform pore distribution.MOF can transform to porous carbon(PC) which is decorated with metal species at appropriate pyrolysis temperature.However,the loss mechanism of pure MOF-derived PC is often relatively simple.In order to further improve the MA performance,the MOFs coupled with other loss materials are a widely studied method.In this review,we summarize the theories of MA,the progress of different MOF-derived PC-based MAMs,tunable chemical structures incorporated with dielectric loss or magnetic loss materials.The different MA performance and mechanisms are discussed in detail.Finally,the shortcomings,challenges and perspectives of MOF-derived PC-based MAMs are also presented.We hope this review could provide a new insight to design and fabricate MOF-derived PC-based MAMs with better fundamental understanding and practical application.展开更多
Microwave has been widely used in many fields,including communication,medical treatment and military industry;however,the corresponding generated radiations have been novel hazardous sources of pollution threating hu...Microwave has been widely used in many fields,including communication,medical treatment and military industry;however,the corresponding generated radiations have been novel hazardous sources of pollution threating human’s daily life.Therefore,designing high-performance microwave absorption materials(MAMs)has become an indispensable requirement.Recently,metal-organic frameworks(MOFs)have been considered as one of the most ideal precursor candidates of MAMs because of their tunable structure,high porosity and large specific surface area.Usually,MOF-derived MAMs exhibit excellent electrical conductivity,good magnetism and sufficient defects and interfaces,providing obvious merits in both impedance matching and microwave loss.In this review,the recent research progresses on MOF-derived MAMs were profoundly reviewed,including the categories of MOFs and MOF composites precursors,design principles,preparation methods and the relationship between mechanisms of microwave absorption and microstructures of MAMs.Finally,the current challenges and prospects for future opportunities of MOF-derived MAMs are also discussed.展开更多
The catalytic activities are generally believed to be relevant to the electronic states of their active center, but understanding this relationship is usually difficult. Here, we design two types of catalysts for elec...The catalytic activities are generally believed to be relevant to the electronic states of their active center, but understanding this relationship is usually difficult. Here, we design two types of catalysts for electrocatalytic urea via a coordination strategy in a metal–organic frameworks: Cu^(Ⅲ)-HHTP and Cu^(Ⅱ)-HHTP. Cu^(Ⅲ)-HHTP exhibits an improved urea production rate of 7.78 mmol h^(−1)g^(−1) and an enhanced Faradaic efficiency of 23.09% at-0.6 V vs. reversible hydrogen electrode, in sharp contrast to Cu^(Ⅱ)-HHTP.Isolated CuⅢspecies with S = 0 spin ground state are demonstrated as the active center in Cu^(Ⅲ)-HHTP, different from Cu^(Ⅱ) with S = 1/2 in Cu^(Ⅱ)-HHTP. We further demonstrate that isolated Cu^(Ⅲ)with an empty dx2-y20orbital in Cu^(Ⅲ)-HHTP experiences a single-electron migration path with a lower energy barrier in the C–N coupling process, while Cu^(Ⅱ)with a single-spin state( d_(x2-y2)^(1)) in Cu^(Ⅱ)-HHTP undergoes a two-electron migration pathway.展开更多
基金funded by the Key Research and Development Projects of Shaanxi Province(2023-YBNY-178)Shaanxi Fundamental Science Research Project for Chemistry&Biology(22JHQ029)+1 种基金China Postdoctoral Science Foundation(2019M653766)National Natural Science Foundation of China(21901212)。
文摘The risk of infection following consumption of foodborne pathogens contaminated foods became a significant concern for human health and imposes great economic losses to food industry.Herein,Ag nanoparticles were integrated to Cu-based metal-organic framework(Cu-MOF)for antibacterial activity.The crystal structure,morphology and composition of the prepared composite Ag@Cu-MOF were confirmed by powder X-ray diffraction,thermogravimetric analysis,scanning electron microscope,transmission electron microscope,Fourier transform infrared spectroscopy,and X-ray photoelectron spectroscopy.Antibacterial assays revealed that Ag@Cu-MOF exhibited increased inhibitory activity against Escherichia coli O157:H7 in comparison to Cu-MOF.Ag@Cu-MOF treated bacterial cells displayed distinct morphological changes,a decreased ratio of live/dead cells,as well as a reduction of intracellular ATP.Antibiofilm studies demonstrated that Ag@CuMOF could dramatically inhibit biofilm formation and disrupt preformed biofilms by interfering the metabolic activity and decreasing the expression of biofilm-associated genes.Food contamination model illustrated that Ag@Cu-MOF significantly prevented the growth of E.coli O157:H7 in packed pork.This study sheds light on the potential of Ag@Cu-MOF as a promising antimicrobial material for preserving pork.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12304261 and 12274177)the China Postdoctoral Science Foundation(Grant No.2024M751076)。
文摘Lanthanide metal-organic frameworks(Ln-MOFs)have received extensive attention in the development of photoluminescent(PL)materials due to their stable structures and unique line-like emission spectroscopic properties.However,in order to prepare Ln-MOFs with high PL quantum yield(PLQY),further improving the sensitization efficiency of the“antenna effect”is essential.Herein,remarkably enhanced PL in[Tb_(2)(BDC)_(3)(DMF)_(2)(H_(2)O)_(2)]_n MOF is successfully achieved via high-pressure engineering at room temperature.Notably,the PL intensity continues to increase as the pressure increases,reaching its peak at 12.0 GPa,which is 4.4 times that of the initial state.Detailed experimental and theoretical calculations have demonstrated that pressure engineering significantly narrows the bandgap of[Tb_(2)(BDC)_(3)(DMF)_(2)(H_(2)O)_(2)]_n,optimizing both singlet and triplet energy levels.Ultimately,higher antenna effect sensitization efficiency is achieved by promoting intersystem crossing and energy transfer processes.Our work provides a promising strategy for the development of high PLQY Ln-MOFs.
基金supported by the National Natural Science Foundation of China(No.22090050,No.22090052,No.22176180)National Basic Research Program of China(No.2021YFA1200400)+1 种基金the Natural Science Foundation of Hubei Province(No.2024AFA001)Shenzhen Science and Technology Program(No.JCYJ20220530162406014)。
文摘Strontium-90,a highly radioactive isotope,accumulates within the food chain and skeletal structure,posing significant risks to human health.There is a critical need for a sensitive detection strategy for Strontium-90 in complex environmental samples.Here,solid-state nanochannels,modified with metal-organic frameworks(MOF)and specific aptamers,were engineered for highly sensitive detection of strontium ion(Sr^(2+)).The synergistic effect between the reduced effective diameter of the nanochannels due to MOF and the specific binding of Sr^(2+) by aptamers amplifies the difference in ionic current signals,enhancing detection sensitivity significantly.The MOF-modified nanochannels exhibit highly sensitive detection of Sr^(2+),with a limit of detection(LOD)being 0.03 nmol·L^(-1),whereas the LOD for anodized aluminum oxide(AAO)without the modified MOF nanosheets is only 1000 nmol·L^(-1).These findings indicate that the LOD of Sr^(2+) detected by the MOF-modified nanochannels is approximately 33,000 times higher than that by the nanochannels without MOF modification.Additionally,the highly reliable detection of Sr^(2+) in various water samples was achieved,with a recovery rate ranging from 94.00%to 118.70%.This study provides valuable insights into the rapidly advancing field of advanced nanochannel-based sensors and their diverse applications for analyzing complex samples,including environmental contaminant detection,food analysis,medical diagnostics,and more.
基金financially supported by National Natural Science Foundation of China(No.82204604,22304055)Youth Talent Program of Hebei Provincial Education Department(No.BJ2018020)+1 种基金Natural Science Foundation of Hebei Province(No.E2020209151,E2022209158,H2022209012)Science and Technology Project of Hebei Education Department(No.JZX2024026)。
文摘Aqueous zinc ion batteries(AZIBs)are one of the promising energy storage devices.However,uncontrolled dendrite and side reactions have seriously hindered its further application.In this study,the metal-organic framework(MOF)functionalized glass fiber separator(GF-PFC-31)was used to regulate interfacial behavior of zinc metal anode,enabling the development of high-performance AZIBs.In PFC-31,there areπ-πinteractions between two adjacent benzene rings with a spacing of 3.199 A.This spacing can block the passage of[Zn(H_(2)O)_6]^(2+)(8.6 A in diameter)through the GF-PFC-31 separator to a certain extent,which promotes the deposition process of Zn ions.In addition,the sulfonic acid group(-S03H)contained in GF-PFC-31 can form a hydrogen bonding network with H_(2)O,which can provide a desolvation effect and reduce the side reaction.Consequently,GF-PFC-31 separator achieves uniform deposition of Zn ions.The Zn‖GF-PFC-31‖Zn symmetric cell exhibits stable cycle life(3000 h at 1.2 mA cm^(-2),2000 h at 0.3 mA cm^(-2),and 2000 h at 5.0 mA cm^(-2)),and Zn‖GF-PFC-31‖MnO_(2) full cell with GF-PFC-31 separator can cycle for 1000 cycles at 1.2 A g^(-1)with capacity retention rate of 82.5%.This work provides a promising method to achieve high-performance AZIBs.
基金supported by the National Key Research and Development Program of China (2022YFB4002100)the development project of Zhejiang Province's "Jianbing" and "Lingyan" (2023C01226)+4 种基金the National Natural Science Foundation of China (22278364, U22A20432, 22238008, 22211530045, and 22178308)the Fundamental Research Funds for the Central Universities (226-2022-00044 and 226-2022-00055)the Science Foundation of Donghai Laboratory (DH-2022ZY0009)the Startup Foundation for Hundred-Talent Program of Zhejiang UniversityScientific Research Fund of Zhejiang Provincial Education Department.
文摘Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hampered their practical use in water splitting.Herein,we develop a bond length adjustment strategy for optimizing naphthalene-based MOFs that synthesized by acid etching Co-naphthalenedicarboxylic acid-based MOFs(donated as AE-CoNDA)to serve as efficient catalyst for water splitting.AE-CoNDA exhibits a low overpotential of 260 mV to reach 10 mA cm^(−2)and a small Tafel slope of 62 mV dec^(−1)with excellent stability over 100 h.After integrated AE-CoNDA onto BiVO_(4),photocurrent density of 4.3 mA cm^(−2)is achieved at 1.23 V.Experimental investigations demonstrate that the stretched Co-O bond length was found to optimize the orbitals hybridization of Co 3d and O 2p,which accounts for the fast kinetics and high activity.Theoretical calculations reveal that the stretched Co-O bond length strengthens the adsorption of oxygen-contained intermediates at the Co active sites for highly efficient water splitting.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.21978119,22202088)Key Research and Development Plan of Hainan Province(ZDYF2022SHFZ285)Jiangsu Funding Program for Excellent Postdoctoral Talent(2022ZB636)。
文摘Synergic catalytic effect between active sites and supports greatly determines the catalytic activity for the aerobic oxidative desulfurization of fuel oils.In this work,Ni-doped Co-based bimetallic metal-organic framework(CoNi-MOF)is fabricated to disperse N-hydroxyphthalimide(NHPI),in which the whole catalyst provides plentiful synergic catalytic effect to improve the performance of oxidative desulfurization(ODS).As a bimetallic MOF,the second metal Ni doping results in the flower-like morphology and the modification of electronic properties,which ensure the exposure of NHPI and strengthen the synergistic effect of the overall catalyst.Compared with the monometallic Co-MOF and naked NHPI,the NHPI@CoNi-MOF triggers the efficient activation of molecular oxygen and improves the ODS performance without an initiator.The sulfur removal of dibenzothiophene-based model oil reaches 96.4%over the NHPI@CoNi-MOF catalyst in 8 h of reaction.Furthermore,the catalytic product of this aerobic ODS reaction is sulfone,which is adsorbed on the catalyst surface due to the difference in polarity.This work provides new insight and strategy for the design of a strong synergic catalytic effect between NHPI and bimetallic supports toward high-activity aerobic ODS materials.
基金the Beijing Nova Program(20230484431)Opening Project of State Silica-Based Materials Laboratory of Anhui Province(2022KF12)is gratefully acknowledged.
文摘With the continuous advancement of communication technology,the escalating demand for electromagnetic shielding interference(EMI)materials with multifunctional and wideband EMI performance has become urgent.Controlling the electrical and magnetic components and designing the EMI material structure have attracted extensive interest,but remain a huge challenge.Herein,we reported the alternating electromagnetic structure composite films composed of hollow metal-organic frameworks/layered MXene/nanocellulose(HMN)by alternating vacuum-assisted filtration process.The HMN composite films exhibit excellent EMI shielding effectiveness performance in the GHz frequency(66.8 dB at Kaband)and THz frequency(114.6 dB at 0.1-4.0 THz).Besides,the HMN composite films also exhibit a high reflection loss of 39.7 dB at 0.7 THz with an effective absorption bandwidth up to 2.1 THz.Moreover,HMN composite films show remarkable photothermal conversion performance,which can reach 104.6℃under 2.0 Sun and 235.4℃under 0.8 W cm^(−2),respectively.The unique micro-and macrostructural design structures will absorb more incident electromagnetic waves via interfacial polarization/multiple scattering and produce more heat energy via the local surface plasmon resonance effect.These features make the HMN composite film a promising candidate for advanced EMI devices for future 6G communication and the protection of electronic equipment in cold environments.
基金supported by the National Natural Science Foundation of China(22179006)。
文摘Metal-organic frameworks(MOFs)are among the most promising materials for lithium-ion batteries(LIBs)owing to their high surface area,periodic porosity,adjustable pore size,and controllable chemical composition.For instance,their unique porous structures promote electrolyte penetration,ions transport,and make them ideal for battery separators.Regulating the chemical composition of MOF can introduce more active sites for electrochemical reactions.Therefore,MOFs and their related composites have been extensively and thoroughly explored for LIBs.However,the reported reviews solely include the applications of MOFs in the electrode materials of LIBs and rarely involve other aspects.A systematic review of the application of MOFs in LIBs is essential for understanding the mechanism of MOFs and better designing related MOFs battery materials.This review systematically evaluates the latest developments in pristine MOFs and MOF composites for LIB applications,including MOFs as the main materials(anode,cathode,separators,and electrolytes)to auxiliary materials(coating layers and additives for electrodes).Furthermore,the synthesis,modification methods,challenges,and prospects for the application of MOFs in LIBs are discussed.
基金Project supported by the Science Challenge Project(Grant No.TZ2018001)the National Natural Science Foundation of China(Grant Nos.11872058 and 21802036)the Project of State Key Laboratory of Environment-friendly Energy Materials,and Southwest University of Science and Technology(Grant No.21fksy07)。
文摘Metal-organic frameworks(MOFs),which are self-assembled porous coordination materials,have garnered considerable attention in the fields of optoelectronics,photovoltaic,photochemistry,and photocatalysis due to their diverse structures and excellent tunability.However,the performance of MOF-based optoelectronic applications currently falls short of the industry benchmark.To enhance the performance of MOF materials,it is imperative to undertake comprehensive investigations aimed at gaining a deeper understanding of photophysics and sequentially optimizing properties related to photocarrier transport,recombination,interaction,and transfer.By utilizing femtosecond laser pulses to excite MOFs,time-resolved optical spectroscopy offers a means to observe and characterize these ultrafast microscopic processes.This approach adds the time coordinate as a novel dimension for comprehending the interaction between light and MOFs.Accordingly,this review provides a comprehensive overview of the recent advancements in the photophysics of MOFs and additionally outlines potential avenues for exploring the time domain in the investigation of MOFs.
基金National Key Research and Development Program of China (2021YFB3500700)National Natural Science Foundation of China (51802015)Fundamental Research Funds for the Central Universities (FRF-EYIT-23-07)。
文摘In this work,nickel foam supported CeO_(2)-modified CoBDC(BDC stands for terephthalic acid linker)metal-organic frameworks(NF/CoBDC@CeO_(2)) are prepared by hydrothermal and subsequent impregnation methods,which can be further transformed to NF/CoOOH@CeO_(2) by reconstruction during the electrocatalytic test.The obtained NF/CoOOH@CeO_(2) exhibits excellent performance in electrocatalytic oxidation of 5-hydroxymethylfurfural(HMF) because the introduction of CeO_(2) can optimize the electronic structure of the heterointerface and accelerate the accumulation of ^(*)OH.It requires only a potential of 1.290 V_(RHE) to provide a current density of 50 mA cm^(-2) in 1.0 M KOH+50 mM HMF,which is 222 mV lower than that required in 1,0 M KOH(1.512 V_(RHE)).In addition,density-functional theory calculation results demonstrate that CeO_(2) biases the electrons to the CoOOH side at the heterointerface and promotes the adsorption of ^(*)OH and ^(*)HMF on the catalyst surface,which lower the reaction energy barrier and facilitate the electrocata lytic oxidation process.
基金2023 undergraduate Innovation and Entrepreneurship Project of Yichun University(S202310417015)。
文摘There are some inherent defects for the polyolefin based lithium battery separator,such as,poor thermal stability,poor electrolyte wettability and low porosity,which limit the development of lithium battery.An important way to improve the performance of lithium battery is to improve the separator.Here,three novel separators combined with metal-organic framework materials(MOFs)and carbon materials were prepared by using the in situ growth method and the adsorption combination method simultaneously.The result showed that compared with the polypropylene separator,the porosity and electrolyte wettability were significantly improved in view of these novel polypropylene separators combined with MOFs and carbon materials.Meanwhile,the electrochemical performance of lithium battery equipped with the polypropylene separator combined with MOFs materials and carbon materials was also improved.The result showed that lithium batteries equipped with polypropylene separator combined with MOFs and carbon materials had higher capacity in the first charge and discharge cycle and better electrochemical kinetic reaction processes.
基金supported by the National Energy R&D Center of Petroleum Refining Technology(RIPP,SINOPEC)Tianjin Research Innovation Project for Postgraduate Students(2022SKYZ041).
文摘NH_(2)-MIL-125 is one of the most promising metal-organic frameworks(MOFs)for use as an adsorbent to remove nitrogen-containing compounds(NCCs)from fuels.In this study,NH_(2)-MIL-125 was further modified by loading the highly electronegative F and the heteropoly acid phosphomolybdic acid hydrate(PMA).Hydrogen bonds are suggested to form between F and PMA.X-ray diffraction(XRD)and scanning electron microscopy(SEM)showed that the addition of these elements altered the morphology of NH_(2)-MIL-125,resulting in the growth of sectional octahedrons and cubes.The adsorptive denitrogenation(ADN)activity of 10%PMA@M125 was 1.7 times greater than that of NH_(2)-MIL-125 without F and PMA.The synergistic effect of F and PMA on the morphology and structure of NH_(2)-MIL-125 was examined,with a focus on different PMA contents.This study provides a simple method for modifying the morphology and structure of NH_(2)-MIL-125 by adding the required elements.
基金This work was supported by the National Natural Science Foundation of China(Nos.51872090,51972346)the Hebei Natural Science Fund for Distinguished Young Scholar(No.E2019209433)+2 种基金the Natural Science Foundation of Hebei Province(No.E2020209151)the Hunan Natural Science Fund for Distinguished Young Scholar(2021JJ10064)the Program of Youth Talent Support for Hunan Province(2020RC3011).
文摘Aqueous zinc-ion batteries(AZIBs)are one of the promising energy storage systems,which consist of electrode materials,electrolyte,and separator.The first two have been significantly received ample development,while the prominent role of the separators in manipulating the stability of the electrode has not attracted sufficient attention.In this work,a separator(UiO-66-GF)modified by Zr-based metal organic framework for robust AZIBs is proposed.UiO-66-GF effectively enhances the transport ability of charge carriers and demonstrates preferential orientation of(002)crystal plane,which is favorable for corrosion resistance and dendrite-free zinc deposition.Consequently,Zn|UiO-66-GF-2.2|Zn cells exhibit highly reversible plating/stripping behavior with long cycle life over 1650 h at 2.0 mA cm^(−2),and Zn|UiO-66-GF-2.2|MnO_(2) cells show excellent long-term stability with capacity retention of 85%after 1000 cycles.The reasonable design and application of multifunctional metal organic frameworks modified separators provide useful guidance for constructing durable AZIBs.
基金EPSRC CDT in Metamaterials at University of Exeter and Leverhulme Trust(RPG-2018-320) for financial support。
文摘Surface-functionalized nitrogen/carbon co-doped polymorphic TiO_(2) phase junction nanoparticles uniformly distributed in porous carbon matrix were synthesized by a simple one-step pyrolysis of titanium based metal-organic framework(MOF),NH_(2)-MIL^(-1)25(Ti) at 700℃ under water vapour atmosphere.Introducing water vapour during the pyrolysis of NH_(2)-MIL^(-1)25(Ti) not only functionalizes the derived porous carbon matrix with carboxyl groups but also forms additional oxygen-rich N like interstitial/intraband states lying above the valence band of TiO2 along with the self-doped carbo n,which further narrows the energy band gaps of polymorphic TiO2 nanoparticles that enhance photocatalytic charge transfer efficiency.Without co-catalyst,sample N-C-TiO2/CArW demonstrates H_(2) evolution activity of 426 μmol gcat-1h^(-1),which remarkably outperforms commercial TiO_(2)(P-25) and N-C-TiO_(2)/CAr with a 5-fold and 3-fold H_(2) generation,respectively.This study clearly shows that water vapour atmosphere during the pyrolysis increases the hydrophilicity of the Ti-MOF derived composites by functionalizing porous carbon matrix with carboxylic groups,as well as enhancing the electrical conductivity and charge transfer efficiency due to the formation of additional localized oxygen-rich N like interstitial/intraband states.This work also demonstrates that by optimizing the anatase-rutile phase composition of the TiO2 polymorphs,tuning the energy band gaps by N/C co-doping and functionalizing the porous carbon matrix in the N-C-TiO2/C nanocomposites,the photocatalytic H_(2) generation activity can be further enhanced.
基金National Key R&D Program of China(2016YFB0100301)the National Natural Science Foundation of China(21875022,51802020,U1664255)+1 种基金Beijing Institute of Technology Research Fund Program for Young ScholarsYoung Elite Scientists Sponsorship Program by CAST(2018QNRC001)。
文摘To effectively alleviate the surface structure degradation caused by electrolyte corrosion and transition metal(TM) dissolution for Ni-rich(Ni content > 0.6) cathode materials, porous Zirconium based metalorganic frameworks(Zr-MOFs, UiO-66) material is utilized herein as a positive electrode additive. UiO-66 owns tunable attachment sites and strong binding affinity, making itself an efficient defluorination agent to suppress the undesirable reactions caused by fluorine species. Besides, it can also relieve TMs dissolution and block the migration of TMs toward anode side since it’s a multifarious metal ions adsorbent,realizing both cathode and anode interface protection. Benefiting from these advantages, the UiO-66 assistant Ni-rich cathode achieves superior cycling stability. Particularly in full cell, the positive effects of this multifunctional additive are more pronounced than in the half-cell, that is after 400 cycles at 2 C,the capacity retention has doubled with the addition of UiO-66. More broadly, this unique application of functional additive provides new insight into the degradation mechanism of layered cathode materials and offers a new avenue to develop high-energy density batteries.
基金supported by the National Natural Science Foundation of China(Grant No.21827811)Research and development plan of key areas in Hunan Province(Grant No.2019SK2201)Innovation science and technology plan of Hunan Province(Grant No.2017XK2103).
文摘Investigation of metal–organic frameworks(MOFs)for biomedical applications has attracted much attention in recent years.MOFs are regarded as a promising class of nanocarriers for drug delivery owing to well-defined structure,ultrahigh surface area and porosity,tunable pore size,and easy chemical functionalization.In this review,the unique properties of MOFs and their advantages as nanocarriers for drug delivery in biomedical applications were discussed in the first section.Then,state-ofthe-art strategies to functionalize MOFs with therapeutic agents were summarized,including surface adsorption,pore encapsulation,covalent binding,and functional molecules as building blocks.In the third section,the most recent biological applications of MOFs for intracellular delivery of drugs,proteins,and nucleic acids,especially aptamers,were presented.Finally,challenges and prospects were comprehensively discussed to provide context for future development of MOFs as efficient drug delivery systems.
基金financially supported by the Vietnamese Ministry of Education and Training and the UK Engineering and Physical Sciences Research Council (EP/R01650X/1 and EP/L016028/1)
文摘Introduction of multiple pore size regimes into metalorganic frameworks(MOFs)to form hierarchical porous structures can lead to improved performance of the material in various applications.In many cases,where interactions with bulky molecules are involved,enlarging the pore size of typically microporous MOF adsorbents or MOF catalysts is crucial for enhancing both mass transfer and molecular accessibility.In this review,we examine the range of synthetic strategies which have been reported thus far to prepare hierarchical MOFs or MOF composites with added macroporosity.These fabrication techniques can be either pre-or post-synthetic and include using hard or soft structural template agents,defect formation,routes involving supercritical CO2,and 3D printing.We also discuss potential applications and some of the challenges involved with current techniques,which must be addressed if any of these approaches are to be taken forward for industrial applications.
基金financial support from Ministry of Science and Technology of China(MoST,2016YFA0200200)the National Natural Science Foundation of China(NSFC,21875114,51373078,and 51422304)NSF of Tianjin City(15JCYBJC17700)。
文摘The development of microwave absorption materials(MAMs) is a considerable important topic because our living space is crowed with electromagnetic wave which threatens human’s health.And MAMs are also used in radar stealth for protecting the weapons from being detected.Many nanomaterials were studied as MAMs,but not all of them have the satisfactory performance.Recently,metal-organic frameworks(MOFs) have attracted tremendous attention owing to their tunable chemical structures,diverse properties,large specific surface area and uniform pore distribution.MOF can transform to porous carbon(PC) which is decorated with metal species at appropriate pyrolysis temperature.However,the loss mechanism of pure MOF-derived PC is often relatively simple.In order to further improve the MA performance,the MOFs coupled with other loss materials are a widely studied method.In this review,we summarize the theories of MA,the progress of different MOF-derived PC-based MAMs,tunable chemical structures incorporated with dielectric loss or magnetic loss materials.The different MA performance and mechanisms are discussed in detail.Finally,the shortcomings,challenges and perspectives of MOF-derived PC-based MAMs are also presented.We hope this review could provide a new insight to design and fabricate MOF-derived PC-based MAMs with better fundamental understanding and practical application.
基金Open access funding provided by Shanghai Jiao Tong University.
文摘Microwave has been widely used in many fields,including communication,medical treatment and military industry;however,the corresponding generated radiations have been novel hazardous sources of pollution threating human’s daily life.Therefore,designing high-performance microwave absorption materials(MAMs)has become an indispensable requirement.Recently,metal-organic frameworks(MOFs)have been considered as one of the most ideal precursor candidates of MAMs because of their tunable structure,high porosity and large specific surface area.Usually,MOF-derived MAMs exhibit excellent electrical conductivity,good magnetism and sufficient defects and interfaces,providing obvious merits in both impedance matching and microwave loss.In this review,the recent research progresses on MOF-derived MAMs were profoundly reviewed,including the categories of MOFs and MOF composites precursors,design principles,preparation methods and the relationship between mechanisms of microwave absorption and microstructures of MAMs.Finally,the current challenges and prospects for future opportunities of MOF-derived MAMs are also discussed.
基金supported by“Key Program for International S&T Cooperation Projects of China”from the Ministry of Science and Technology of China(Grant No.2019YFE0123000)the National Natural Science Foundation of China(Grant Nos.91961125 and 21905019)+2 种基金Science and Technology Project of Guangdong Province(No.2020B0101370001)Chemistry and Chemical Engineering Guangdong Laboratory(No.1932004)the Project from China Petrochemical Corporation(No.S20L00151).
文摘The catalytic activities are generally believed to be relevant to the electronic states of their active center, but understanding this relationship is usually difficult. Here, we design two types of catalysts for electrocatalytic urea via a coordination strategy in a metal–organic frameworks: Cu^(Ⅲ)-HHTP and Cu^(Ⅱ)-HHTP. Cu^(Ⅲ)-HHTP exhibits an improved urea production rate of 7.78 mmol h^(−1)g^(−1) and an enhanced Faradaic efficiency of 23.09% at-0.6 V vs. reversible hydrogen electrode, in sharp contrast to Cu^(Ⅱ)-HHTP.Isolated CuⅢspecies with S = 0 spin ground state are demonstrated as the active center in Cu^(Ⅲ)-HHTP, different from Cu^(Ⅱ) with S = 1/2 in Cu^(Ⅱ)-HHTP. We further demonstrate that isolated Cu^(Ⅲ)with an empty dx2-y20orbital in Cu^(Ⅲ)-HHTP experiences a single-electron migration path with a lower energy barrier in the C–N coupling process, while Cu^(Ⅱ)with a single-spin state( d_(x2-y2)^(1)) in Cu^(Ⅱ)-HHTP undergoes a two-electron migration pathway.